1.在图9—15,9—16中,只能用图中已有的三个数填满其余的空格,并要求每个数字必须使用3次,而且每行、每列及每条对角线上的三个数之和都必须相等.
2.把10、12、14这三个数填在图9—17的方格中,使每行、每列和每条对角线上的三个数之和都相等.
3.在图9—18中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15.
4.与第3题的图相似,只是已经把1、4、6三个数填好,请你继续把图9—19填满.
5.图9—20中有三个大圆,在大圆的交点上有六个小圆圈.请你把1、2、3、4、5、6六个数分别填在六个小圆圈里,要求每个大圆上的四个小圆圈中的数之和都是14.
6.图9—21是由四个三角形组成的,每个三角形上都有三个小圆圈.请你把1、2、3、4、5、6、7、8、9这九个数填在九个小圆圈中,让每个三角形上的三个数之和都是15.
7.图9—22是由四个扁而长的圆圈组成的,在交点处有8个小圆圈.请你把1、2、3、4、5、6、7、8这八个数分别填在8个小圆圈中.要求每个扁长圆圈上的四个数字的和都等于18.
答案解析
1.解:因为空格中只能用4、6、8填,不难看出左上角的空格只能填6,见图9—23.同样道理,右下角也只能填6,见图9—24.下一步就能容易地填满其他空格了(见图9— 25).
在图9—16中,显然右下角应填7,见图9—26.而右上角应填5,见图9—27.这样其他空格随之就可以填满了,见图9—28.
2.解:模仿例1的填法.首先将10、12、14三个数的中间数12填在中心方格中,并使一条对角线上的三个数都是12,见图9—29,第二步再按要求填满其他空格就容易了,见图9—30.
3.解:这样想,图9—18中还空着四个小区域需要填入四个数:1、2、4、6.还可看出中心的一个小区域属于三个圆圈,这里应填哪个数呢?下面用拆数方法来分析确定.
先见图9—18中的圆圈Ⅰ,圆中已有两个数5和7,所以空着的两个小区域应填的两个数之和为15-5-7=3.再将3分拆成3=1 2,但是在1和2中应把哪一个填到中心的小区域里,现在还不能肯定下来.
再看圆圈Ⅱ,圆中已有两个数5和3,15-5-3=7,而7=1 6,即可把7分拆成7=1 6.
最后看圆圈Ⅲ,15-3-7=5,而5=1 4.至此可以看出,应该把“1”填在中心的小区域了(见图9—31).
4.解:模仿第3题解法拆数:
要填2、3、5、7.
15-4-6=5,5=2 3
15-1-6=8,8=3 5
15-1-4=10,10=3 7
所以,应把3填在中心的小区域,见图9—32.
5.解:如图9—33所示,因为要求大圆上的四个小圆圈中的四个数之和等于14,所以就要把14分拆成四个数相加之和,而且按题目要求这四个数要在1、2、3、4、5、6中选取;14=6 5 2 1,
14=6 4 3 1,
14=5 4 3 2.
6.解:先将15分拆成三个数之和,并且要求各数在1、2、3、4、5、6、7、8、9这九个数中选取.用二步分拆法:
15=9 6=9 5 1
15=8 7=8 4 3
15=7 8=7 6 2
以上三式把九个数都用上了.这样(9,5,1)、(8,4,3)和(7,6,2)就可以分别填入角上的3个三角形中.再注意到中间的三角形的三个小圆圈分属于角上的3个三角形,所以从三组中各取一个数重新组成一组填入中间三角形,如取(9,4,2),填出下面的结果,见图9—34.注意此题填法不惟一,你还能想出别种填法吗?
7.解:因为题目要求扁长圆圈上的四个数之和等于18,所以就要将18分拆成四个不相等的整数之和,而且各数要从1~8这八个数中选取.如:
18=8 7 2 1
18=8 5 2 3
18=7 6 4 1
18=6 5 4 3
即得到四组数:(8,7,2,1)、(8,5,2,3)、(7,6,4,1)、(6,5,4,3),把它们填入扁长圆圈时,注意适当调整,就可以得出题目的答案如图9—35所示.
,