opencv抠出边缘检测的图形
python opencv实现图像边缘检测本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤:
1、去噪
如cv2.gaussianblur()等函数;
2、计算图像梯度
图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式:
3、非极大值抑制
在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的。如下图所示:
4、滞后阈值
现在要确定那些边界才是真正的边界。这时我们需要设置两个阈值:minval 和maxval。当图像的灰度梯度高于maxval 时被认为是真的边界,那些低于minval 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:
在python opencv接口中,提供了canny函数,可以对图像进行一键执行边缘检测。
接下来,利用canny函数进行边缘检测的实验。
canny函数需要指定几个参数:
1、需要进行边缘检测的原图
2、阈值下限
3、阈值上限
我们为了能够看到不同阈值范围对边缘检测结果的影响,设置了两个滑动条,来分别表示阈值上下限。
完整代码如下:
|
# -*- coding: utf-8 -*- """ created on thu sep 13 14:23:32 2018 @author: leon 内容: 对图片进行边缘检测; 添加滑动条,可自由调整阈值上下限。 """ import cv2 import numpy as np def nothing(x): pass cv2.namedwindow( 'canny' , 0 ) # 创建滑动条 cv2.createtrackbar( 'minval' , 'canny' , 0 , 255 ,nothing) cv2.createtrackbar( 'maxval' , 'canny' , 0 , 255 ,nothing) img = cv2.imread( 'tree.jpg" alt="opencv抠出边缘检测的图形(python opencv实现图像边缘检测)" border="0" /> # 高斯滤波去噪 img = cv2.gaussianblur(img,( 3 , 3 ), 0 ) edges = img k = 0 while ( 1 ): key = cv2.waitkey( 50 ) & 0xff if key = = ord ( 'q' ): break # 读取滑动条数值 minval = cv2.gettrackbarpos( 'minval' , 'canny' ) maxval = cv2.gettrackbarpos( 'maxval' , 'canny' ) edges = cv2.canny(img,minval,maxval) # 拼接原图与边缘监测结果图 img_2 = np.hstack((img,edges)) cv2.imshow( 'canny' ,img_2) cv2.destroyallwindows() |
效果如图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持开心学习网。
原文链接:https://blog.csdn.net/oYeZhou/article/details/82691637