函数商的求导法则:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2。导数是微积分中的重要基础概念。当函数y=f(x)的自变...
方向导数求解方法:先求切线斜率和法线斜率,得到内法线方向,再求z对x和y的偏导数,最后求方向导数。首先我们要明白方向导数的定义,以三元函数为例,设三元函数f在点...
其实常数求导就等于零,这个问题可以从导数的几何意义去解释:首先y=c,是一条平行于x轴的直线,所以它的就是斜率k=0,则其导数=0。但是一般来说都不会求常数的导...
假设已知切点是(c,d),导数方程是y=f(x)。斜率k的求解方法:k=f(c),即把切点的横坐标代入导数方程,此时得到的数字就是斜率。切线方程的求解方法:切线...
当函数z=f(x,y)在(x0,y0)的两个偏导数fx(x0,y0)与fy(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)...
,...
在溶质质量分数计算中常用的守恒法是根据溶质的质量守恒,守恒法不仅适用于溶液的稀释,还可用于溶液的浓缩、结晶、混合、配制等关于溶液稀释的计算,因为溶液稀释前后,溶...
质量分数计算,若溶质全部溶于水,且不与水发生化学反应,直接利用计算公式,w=(m溶质/m溶液)×100%。若溶质虽不与水反应,但没有全部溶解,则溶质质量只计算溶...
把分子变成1(分母同样缩小)就可以了。把单位“1”平均分成若干份取其中的一份的数,叫做分数单位。即分子是1,分母是正整数的分数,又叫单位分数,记为1/n。单位分...
导数是当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数...
偏导数的表示符号读作round。数学里只用作表示偏导数的记号,在表示偏导数的时候,一般不念字母名称,多念作“偏”(例如 z对x的偏导数,念作“偏z偏x”...
(u+v)=u+v。 (u-v)=u-v。 (uv)=uv+uv。 (u/v)=(uv-uv)/v^2。 如果函数y=f(x)在开区间内每一点都可导,就称函数f...
tanx求导的结果是secx. 可把tanx化为sinx/cosx进行推导 (tanx)'=(sinx/cosx)'=[(sinx)'cosx-sinx(cos...
arctanx的导数是:1/1+x2。设y=arctanx,则x=tany。因为arctanx′=1/tany′,且tany′=(siny/cosy)′=cos...
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不...
导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在...
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy...
导数的几何意义:曲线过切点的切线的斜率。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上...
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy...
常数的导数等于0。导数是微积分学中重要的基础概念,是函数的局部性质。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量...