将分式不等式化为整式不等式,不等式左边不能再化简的转化方法:注意未知数的取值范围,分式不等式右边不为0或不等式左边还能化简的转化为整式不等式的步骤:移项将不等式...
去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和...
不等式的解法:(1)找出未知数的项、常数项,该化简的化简。(2)未知数的项放不等号左边,常数项移到右边。(3)不等号两边进行加减乘除运算。(4)不等号两边同除未...
绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解。转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。常见的形式有以下...
首先去分母:做法:不等式两边同乘分母的最小公倍数。注意:①不要漏乘不含分母的项。②分子是一个代数式时,分数线有括号的作用,去分母后应作为一个整体加上括号。③不等...
一元二次不等式解法有配方法、公式法、数轴穿根、一元二次函数图象进行求解4种方法。公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b²-4ac...
A、B是整式,B中含有字母的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。 当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的...
例如A/B,A、B是整式,B中含有字母且B不等于0的式子叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。分母不能为0,若分母的值为零,则分...
形如A/B(A、B是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。分式有意义条件:分母不为0。分式值为0条件:分子为0且分母不为0...
分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程,该部分知识属于初等数学知识。注意(1)注意去分母时,不要漏乘整式项。(2)増根是分式方程...
整式,如果代数式的分母中没有字母,就是整式。整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有...
约分。根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。公因式的提取方法。系数取分子和...
真分式是分式的一种,是指一个分式的分子的最高次数低于分母的最高次数。凡是分子与分母无共同公因式的真分式均可以被拆为多项分式相加的形式。真分式的分子分母不是数字而...
分式有意义条件:分母不为0。分式值为0条件:分子为0且分母不为0。分式值为正(负)数条件:分子分母同号得正,异号得负。分式值为1的条件:分子=分母≠0。分式值为...
分式方程无解是指无论取何值都不能满足分式方程等号两边相等.分式方程无解主要有两种情形:原分式方程在等号两边同时乘最简公分母化简为等式方程后,等式方程无解;在分式...
是指可使方程左、右两边相等的未知数的取值。分母里含有未知数或含有未知数整式的有理方程叫做分式方程,分式方程的增根并不是原分式方程的根,而是分式方程去分母后化成的...
分式方程的增根指的是分式方程求解后得到的不满足题设条件的根。本质上是在分式方程去分母的过程中,无法保证恒等变形,所以产生增根。有增根就肯定是有失根的,增根与失根...
分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程,该部分知识属于初等数学知识。方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互...
假分式是分式的一种。一个分式的分子的次数高于或等于分母的次数,那么这个分式叫做假分式。假分式可以用多项式除法化为整式或整式与分式的和。真分式和假分式的区别与真分...
真分式和假分式是一个与之相近的概念。 分式的分子分母不是数字而是数学表达式, 例如,1/2,4/7是分数,而(a+1)/(a^2+4a+5)则是分式。读做a的平...