看这篇就够了!
我特别能理解提问者的感受,因为很多同学都可能有以下几个需求
1、毕业有论文要求,但老板帮助不大
2、虽然毕业无论文要求,但希望通过发表论文来提升自己的职场竞争力
3、希望通过做研究和发表来争取国外的博士机会
在明确了主题后,我们就可以把问题继续分解为三个子问题:
1.如何选题2.如何研究3.如何投稿
1、如何选题
第一点选择适合的研究方向是成功的一半,不要单纯因为兴趣而选定研究方向。因为要做独立研究,首先要避开所有重器材的方向,比如做深度学习你作为个人是刷不过集团军的--你没有那么多计算资源。
第二点就是选择适合自己的方向。大部分基础学科如数学、物理等都需要多年的知识积累以及导师指导,因为导师的轻轻一点就可以省掉了数天甚至数个月的瞎想。
选题的第三点就是要读几篇该领域的经典文章,试试水深。换句话说,就是看看自己能不能大概读懂,知识的空缺有多大,离能够独立成文还有多远。
如果某一领域的文章都有大量的公式推导且你的数学功底有限,那么就不建议选择这类方向。读综述文章一般也是个很好的思路,这样可以快速看到领域的边界,也有助于缩小选题范围。
当然,兴趣依然是一切的源头,也是能不断激励你的后盾。
总结来看,选题是一个平衡过程,是硬件资源 知识背景 个人兴趣的综合后的产物。其中任意一项如果是绝对短板的话,就很容易影响最后的产出。
综合要选择一个自己有兴趣,有一定的相关知识,资源要求不高,且写作水平和领域论文不会相差太远的方向。
2、如何研究
当我们有了一个适当的选题后,应该先读该领域的经典教科书或者综述文章。
我个人的经验是:一边读一边记下自己天马行空的点子,先不用想是否成熟,记下来再说。一边读一边看能不能和其他领域结合,比如用集成学习或是graph mining做推荐系统。
一边读一边缩小自己的选题范围,通过阅读了解自己更擅长在哪个(章节)主题上发力。
大部分教科书都是分章节介绍内容,而章节在一定程度上前后独立。因此你可以着重挑自己读着有趣的内容深入了解。
假设我们现在确定了一个小主题:如何利用「集成学习」来提升「推荐系统」的「鲁棒性」。
那么找到新的方向其实并不难,你需要:找到该领域常用的数据集(benchmark datasets),找到其他基线算法的实现(baseline algorithm implementation),一般在GitHub上搜索算法名就可以。可以找最近的相关论文的related works:来追踪领域进展。
找一本集成学习的教科书。第一步就是重现基准算法在常用数据集上的表现,这个将会是进行研究的重要参照物。如果某些基准算法没有现成的实现,你可以尝试着动手写一个--实现算法的过程往往就是找灵感改进的过程。
等以上步骤做完后,你就可以考虑如何用集成学习来改进推荐系统。这个时候就可以参考集成学习教科书,分析不同算法的优劣,找到哪些方法有助于提高鲁棒性,再应用到推荐系统上去。跨领域交叉往往比在特定领域创新要容易,这个思路特别适合独立研究者。
3、如何投稿
首先一般投稿有期刊和会议,期刊一般内容更加完善,但会议一般更加前沿,不同领域在意的不同。
期刊一般是单盲(即审稿人知道你的身份,而你不知道谁是审稿人)。会议可能是单盲、双盲甚至三盲(比如ICDM)。考虑到独立研究没有老板的背书,那么尽量避开单盲的投稿,因为你可能会从中吃亏。
第二点就是考虑审稿周期,大部分会议的审稿都在1-3个月内,而大部分期刊的第一轮意见都需要3个月以上才会出现。所以时间敏感的话,建议优先投会议,而非期刊。
另一个常见的操作是会议论文在发表后经过扩展(>30%)的新内容再重投期刊,可以同时兼顾时效性和完整性。
选择投稿渠道也是对于新手非常不友好的环节,建议多问问周围的资深人士。
这一切的前提都是你的英文足够好,这点是一切的前提。最佳情况还是要和别人合作,即使他们和你一样是新手也没关系,毕竟是人多力量大,心理上有个依靠。还有一点就是新手独立发文,在单盲的情况下更容易被拒稿,增加1-2个共同作者有助于减轻这种偏见,原因非常明显就不赘述了。
论文被拒稿是很常见的事情,作为独立新手就更无法避免了。
4、总结
理论上只要你方向选的合适,自身条件尚可,在坚持不懈的实验、写作、投稿、被拒、修改、重投后,总能慢慢走上正轨。如果幸运的话说不定还能在你的研究小领域打开一点局面,有一点知名度。
独立研究最大的成就感来自于「独立」,在这个过程中,你会不断的怀疑自己甚至否定自己,这也是为什么我建议大家能有人一起同行。
但当你有所推进时,比如发出了第一篇不错的文章,你会非常激动。
因为你完成了自己的博士入门训练,避开了民科式科研,在艰苦的环境中打开了一片局面,甚至还微微推动了科学发展。这比发表论文本身更有意义,你应该为自己感到自豪。
,