金属焊接之对焊简介与应用-冠业精工
对焊,是指将焊件分别置于两夹紧装置之间,使其端面对准,在接触处通电加热进行焊接的方法。对焊要求焊件接触处的截面尺寸、形状相同或相近,以保证焊件接触面加热均匀。对焊主要用于制造封闭形零件(如自行车车圈、钢窗等);轧材接长(如钢镇、钢管、钢筋等);异类材料焊接(如为节省贵重材料、提高刀具工作部位的寿命所进行的异类材料对焊)。对焊的生产率高、易于实现自动化,因而获得广泛应用。
简介
闪光阶段
闪光的主要作用是加热工件。在此阶段中,先接通电源,并使两工件端面轻微接触,形成许多接触点。电流通过时,接触点熔化,成为连接两端面的液体金属过梁。由于液体过梁中的电流密度极高,使过梁中的液体金属蒸发、过梁爆破。随着动夹钳的缓慢推进,过梁也不断产生与爆破。在蒸气压力和电磁力的作用下,液态金属微粒不断从接口间喷射出来。形成火花急流--闪光。
在闪光过程中,工件逐渐缩短,端头温度也逐渐升高。随着端头温度的升高,过梁爆破的速度将加快,动夹钳的推进速度也必须逐渐加大。在闪光过程结束前,必须使工件整个端面形成一层液体金属层,并在一定深度上使金属达到塑性变形温度。
由于过梁爆破时所产生的金属蒸气和金属微粒的强烈氧化,接口间隙中气体介质的含氧量减少,其氧化能力可降低,从而提高接头的质量。但闪光必须稳定而且强烈。所谓稳定是指在闪光过程中不发生断路和短路现象。断路会减弱焊接处的自保护作用,接头易被氧化。短路会使工件过烧,导致工件报废。所谓强烈是指在单位时间内有相当多的过梁爆破。闪光越强烈,焊接处的自保护作用越好,这在闪光后期尤为重要。
顶锻阶段
在闪光阶段结束时,立即对工件施加足够的顶端压力,接口间隙迅速减小过梁停止爆破,即进入顶锻阶段。顶锻的作用是密封工件端面的间隙和液体金属过梁爆破后留下的火口,同时挤出端面的液态金属及氧化夹杂物,使洁净的塑性金属紧密接触,并使接头区产生一定的塑性变形,以促进再结晶的进行、形成共同晶粒、获得牢固的接头。闪光对焊时在加热过程中虽有熔化金属,但实质上是塑性状态焊接。
预热闪光对焊是在闪光阶段之前先以断续的电流脉冲加热工件,然后在进入闪光和顶锻阶段。预热目的如下:
(1)减小需用功率 可以在小容量的焊机上焊接断面面积较大的工件,因为当焊机容量不足时,若不先将工件预热到一定温度,就不可能激发连续的闪光过程。此时,预热是不得已而采取的手段。
(2)降低焊后的冷却速度?这将有利于防止淬火钢接头在冷却时产生淬火组织和裂纹。
(3)缩短闪光时间 可以减少闪光余量,节约贵重金属。
预热不足之处是:
(1)延长了焊接周期,降低了生产率;
(2)使过程的自动化更加复杂;
(3)预热控制较困难。预热程度若不一致,就会降低接头质量的稳定性。
1、工艺参数
闪光对焊的主要参数有:伸出长度、闪光电流、闪光流量、闪光速度、顶锻流量、顶锻速度、顶锻压力、顶锻电流、夹钳夹持力等。
2、工件准备
闪光对焊的工件准备包括:端面几何形状、毛坯端头的加工和表面清理。
闪光对焊时,两工件对接面的几何形状和尺寸应基本一致。否则将不能保证两工件的加热和塑性变形一致,从而将会影响接头质量。在生产中,圆形工件直径的差别不应超过15%,方形工件和管形工件不应超过10%。
在闪光对焊大断面工件时,最好将一个工件的端部倒角,使电流密度增大,以便于激光闪发。这样就可以不用预热或闪光初期提高次级电压。
对焊毛坯端头的加工可以在剪床、冲床、车床上进行,也可以用等离子或气焰切割,然后清除端面。
闪光对焊时,因端部金属在闪光时被烧掉,故对端面清理要求不甚严格。但对夹钳和工件接触面的清理要求,应和电阻对焊一样。?[1]?
新技术
1)程控降低电压闪光对焊这种焊接方法的特点是,闪光开始阶段采用较高的次级空载电压,以利于激起闪光,当端面温度升高后,再采用低电压闪光,并保持闪光速度不变,以提高热效率。接近顶锻时,再提高次级电压,使闪光强烈,以增加自保护作用。
程控降低电压闪光对焊与预热闪光对焊相比较,具有焊接时间短、需用功率低、加热均匀等优点。
2)脉冲闪光对焊 这种焊法的特点是,在动夹钳送进的行程中,通过液压振动装置,再叠加一个往复振动行程,振幅为0.25-1.2mm,频率为3-35Hz均匀可调。由于振动使焊件端面交替的短路和拉开,从而产生脉冲闪光。
脉冲闪光对焊与普通闪光对焊相比较,由于没有过梁的自发爆破,喷溅的微粒小、火口浅,因而热效率可提高一倍多,顶锻留量可缩小到2/3-1/2。
以上两种方法主要是为了满足大断面工件闪光对焊的需要。
3)矩形波闪光对焊 这种焊法与工频交流正弦波闪光对焊相比较,能显著提高闪光的稳定性。因为正弦波电源当电压接近零位时,将使闪光瞬间中断,而矩形波可在全周期内均匀产生闪光。与电压相位无关。
矩形波电源单位时间内的闪光次数比工频交流提高30%,喷溅的金属微粒细,火口浅、热效率高。矩形波频率可在30-180Hz范围内调节。这种方法多用于薄板和铝合金轮圈的连续闪光对焊。
应用
其应用范围可归纳如下:
(1)工件的接长 例如带钢、型材、线材、钢筋、钢轨、锅炉钢管、石油和天然气输送等管道的对焊。
(2)环形工件的对焊 例如汽车轮辋和自行车、摩托车轮圈的对焊、各种链环的对焊等。
(3)部件的组焊 将简单轧制、锻造、冲压或机加工件对焊成复杂的零件,以降低成本。例如汽车方向轴外壳和后桥壳体的对焊,各种连杆、拉杆的对焊,以及特殊零件的对焊等。
(4)异种金属的对焊 可以节约贵重金属,提高产品性能。例如刀具的工作部分(高速钢)与尾部(中碳钢)的对焊,内燃机排气阀的头部(耐热钢)与尾部(结构钢)的对焊,铝铜导电接头的对焊等。?[2]?
闪光对焊
所有钢和有色金属几乎都可以闪光对焊,但要获得优质接头,还需根据金属的有关特性,采取必要的工艺措施。现分析如下:
(1)导电导热性 对于导电导热性好的金属,应采用较大的比功率和闪光速度,较短的焊接时间,预热闪光更佳
(2)高温强度 对于高温强度高的金属,应采用增大温塑性区的宽度,采用较大的顶锻力。
(3)结晶温度区间 结晶温度区间越大,半熔化区越宽,应采用较大的顶锻压力和顶锻留量,以便把半溶化区中的熔化金属全部排挤进去,以免留在接头中引起缩孔、疏松和裂纹等缺陷。
(4)热敏感性 常见的有两种情况,第一种是淬火钢,焊后接头易产生淬火组织,使硬度增高、塑性降低,严重时会产生淬火裂纹。淬火钢通常采用加热区宽的预热闪光对焊,焊后采用缓慢冷却和回火等措施。第二种是经冷作强化的金属(如奥氏体不锈钢),焊接时接头和热影响区发生软化,使接头强度降低。焊接此类金属通常采用较大的闪光速度和顶锻压力,以尽量缩小软化区和减轻软化程度。
(5)氧化性 接头中的氧化物夹杂对接头质量有严重危害,因此,防止氧化和排除氧化是提高接头质量的关键。金属的成分不同,其氧化性的生成也不同。若生成氧化物的熔点低于被焊金属,这时氧化物有较好的流动性,顶锻时容易被排挤出来。若生成氧化物的熔点高于被焊金属,就必须在被焊金属还处在溶化状态时,才有可能将他们排出。因此,在焊接含有较多硅、铝、铬、一类元素的合金钢时,应该采取严格的工艺措施,彻底排除氧化物。
下面介绍几种常用金属材料闪光对焊的特点:
1、碳素钢的闪光对焊
这类材料具有电阻系数高,加热时碳元素的氧化为接口提供保护性气氛,不含有生成高熔点氧化物的元素等优点。因而都属于焊接性较好的材料。
随着钢中的含碳量的增加,电阻系数增大、结晶区间、高温强度及淬硬倾向都随之增大。因而需要相应增加顶锻压强和顶锻留量。为了减轻淬火的影响。可采用预热闪光对焊,并进行焊后热处理。
碳素钢闪光对焊时,由于碳向加热端面扩散并被强烈氧化,以及顶锻时,半溶化区内含碳量高的溶化金属被挤出,所以在接头处形成含碳量低的贫碳层(呈白色,也称亮带)。贫碳层的宽度随着钢含量的提高、预热时间的加长而增宽;随着含碳量的增大和气体介质氧化倾向的减弱而变窄。采用长时间的热处理可以消除贫碳层。
用得最多的是碳素钢闪光对焊。只要焊接条件选择适当,一般不会出现困难。甚至对溶焊来说比较难焊的铸铁也是一样。
铸铁通常采用预热闪光对焊,用连续闪光对焊容易形成白口。由于含碳量很高,闪光时产生大量的保护气氛,自保护作用较强,即使在工艺参数波动很大时,在接口中也只有少量氧化夹杂物。
2、合金钢的闪光对焊
合金元素含量对钢性能的影响和应采取的工艺措施如下:
1)钢中的铝、铬、硅、钼等元素易生成高熔点氧化物,应增大闪光和顶锻速度,以减少其氧化。
2)合金元素含量增加,高温强度提高,应增加顶锻压强。
3)对于珠光体钢,合金元素增加,淬火倾向性就增大,应采取防止淬火脆化的措施。
低合金钢的焊接特点与中碳钢相似,具有淬硬倾向,应采用相应的热处理方法。这类钢的高温强度大,易生成氧化物夹杂,需要采用较高的顶锻压强,较高的闪光和顶锻速度。
高碳合金钢除具有高碳钢的特点外,还含有一定数量的合金元素。由于含碳量高,结晶温度区间宽,接口处的半熔区就较宽,如果顶锻压力不足,塑性变形量不够,残留在半溶化区内的液态金属将形成疏松组织。还因含有合金元素,会形成高熔点氧化物夹杂。因此,需要较高的闪光和顶锻速度,较大的顶锻压强和顶锻留量。
3、铝及其合金的闪光对焊
这类材料具有导电导热性好,熔点低,易氧化且氧化物熔点高、塑性温度区窄等特点,给焊接带来困难。
铝合金对焊的焊接性较差,工艺参数选择不当时,极易产生氧化夹杂物、疏松等缺陷,使接头强度和塑性急剧降低。闪光对焊时,必须采用很高的闪光和顶锻速度、大的顶锻留量和强迫形成的顶锻模式。所需比功率也要比钢件大得多。
4、铜及其合金的闪光对焊
铜的导热性比铝好,熔点较高,因而比铝要难焊的多。纯铜闪光对焊时,很难在端面形成液态金属层和保持稳定的闪光过程,也很难获得良好的塑性温度区。为此,焊接时需要很高的最后闪光速度、顶锻速度和顶锻压强。
铜合金(如黄铜、青铜)的对焊比纯铜容易。黄铜对焊时由于锌的蒸发而使接头性能下降,为了减少锌的蒸发,也应采用很高的最后闪光速度、顶锻速度和顶锻压强。
铝和铜用闪光对焊焊成的过渡接头广泛用于电机行业。由于它们的熔点相差很大,铝的熔化比铜快4-5倍,所以要相应增大铝的伸出长度。铝和铜闪光对焊的工艺参数可参考下表。铝和铜对焊时,可能形成金属间化合物,增加接头脆性。
5、钛及其合金的闪光对焊
钛及其合金的闪光对焊的主要问题是由于淬火和吸收气体(氢、氧、氦等)而使接头塑性降低。钛合金的淬火倾向与加入的合金元素有关。若加入稳定β相元素则淬火倾向增大,塑性将进一步降低。若采用强烈闪光的连续闪光对焊,不加保护气体就可获得满意的接头。当采用闪光、顶锻速度较小的预热闪光焊时,应在保护气氛中焊接。预热温度为1000-1200度,工艺参数和焊接钢时基本一致,只是闪光留量稍有增加。此时可获得较高塑性的接头。?[2]?
典型工件
1、杆件的对焊
多用于建筑业的钢筋对焊,通常直径d<10mm者用电阻对焊;d>10mm用连续闪光对焊;d>30mm用预热闪光对焊。用手动对焊机时,由于焊机功率较小(通常不超过50KVA)d=15-20mm时,一般就要用预热闪光对焊。
杆件对焊时可使用半圆形或V形夹钳电极,后者可用于各种直径,因而获得广泛应用。杆件属实心断面,刚性较大,可采用较长的伸出长度。
2、管子对焊
管子对焊广泛用于锅炉制造、管道工程及石油设备制造。根据管子的断面和材料选择连续或预热闪光对焊。夹钳电极可以用半圆形或V形。通常当管径与壁厚的比值大于10时可选用半圆形,以防管子被压扁。比值小于10时可选用V形。为避免管子在夹钳电极中滑移,夹钳电极应有适当的工作长度。管径为20-50mm时,工件长度为管径的2-2.5倍;管径为200-300mm时为1-1.5倍。
由于管子是展开形断面,散热较快,端面液态金属易于冷却,顶锻时难于挤出。面积分散,又使闪光过程中自保护作用减弱。因此,当工艺参数选择不当时,非金属夹杂物会残留在接口中形成灰斑缺陷。保持稳定闪光,提高闪光和顶锻速度,并采用气体保护,能减少或消除灰斑。
管子焊后,需去除内外毛刺,以保证管子外表光洁,内部有一定的通道孔径。去除毛刺需使用专用工具。
3、薄板对焊
薄板对焊在冶金工业轧制钢板的连续生产线上广泛应用。板材宽度从300到1500mm以上,厚度从小于1mm到十几mm。材料有碳钢、合金钢及有色金属及其合金等。板材对焊后,接头由于将经受轧制,并生产很大的塑性变形,因而不仅要有一定的强度、而且应有很高的塑性。厚度小于5mm的钢板,一般采用连续闪光对焊,用平面电极单面导电,板材较厚时,采用预热闪光对焊,双面导电,以保证沿整个端面加热均匀。
薄板焊接时,因断面的长与宽之比较大,面积分散、接头冷却快,闪光过程中自保护作用较弱,同时,液态过梁细小,端面上液态金属层薄。易于氧化和凝固。因此必须提高闪光和顶锻速度。焊后须趁热用毛刺切除装置切除毛刺。
4、环形件对焊
环形件(如车轮辋、链环、轴承环、喷气发动机安装边等)焊接时,除了考虑对焊工艺的一般规律外,还应注意分流和环形件变形弹力的影响。由于存在分流,需用功率要增大15-50%。分流虽环形件直径的减小,断面的增大,以及材料电阻率的减小而增大。
环形件对焊时,顶锻压力的选择必须考虑变形反弹力的影响,但由于分流有对环背加热的作用,因而顶锻压力增加量不大。
自行车、摩托车钢圈、汽车轮辋均采用连续闪光对焊,夹钳电极的前口必须与工件断面相吻合。顶锻时,为了防止反弹力影响接头质量,甚至拉开接头,需要延长无电流顶锻时间。
锚链,传动链等链环多用于低碳钢和低合金钢制造,直径d<20mm时可用电阻对焊,d>20mm时可用预热闪光对焊,预热的目的是为了使接口处加热均匀,顶锻时容易产生一定的塑性变形。
5、刀具对焊
刀具对焊时刀具制造业中用于制造毛坯的工艺方法之一,主要是高速钢和中碳钢的对焊,刀具对焊有如下特点:
1)高速钢淬火倾向大,焊后硬度将大大提高,并可能产生淬火裂纹。为了防止裂纹,可采用预热闪光对焊。预热时,将接口附近5-10mm范围内的金属加热到1100-1200℃。焊后在600-700℃的电炉中保温30min进行退火。
2)高速钢加热到高温时,会产生晶粒长大或在半熔化晶界上形成莱氏体共晶物,使接头变脆。莱氏体共晶物不能通过热处理消除。因此需要用充分的顶锻来消除这种组织。
,