来源:新浪宋博士的博客
作者:宋少云教授,武汉轻工大学
笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题等)展开调查。
单元形状我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。
为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。
这五种不同的划分方式都使用矩形单元,只不过各单元的长宽比不同。
例如:
第一种 (1) AR=1.1,就是长宽比接近1;
第二种 (2) AR=1.5,就是长宽比是1.5.其它类推。
第五种 (5) AR=24,此时单元的长度是宽度的24倍。
现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。
各种长宽比结果的比较
我们现在仔细查看一下上表,并分析其含义:
我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点、B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是:
[(-1.093)-(-1.152)]/1.152 = 5.2%
对于其它情况,也采用类似的方式得到A点位移误差的百分比。
从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。
下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。
由此可见,长宽比越接近于1,那么结算结果越精确;越远离1,则误差越大。
因此,我们在进行有限元分析时,应该尽量保证划分的单元长宽比接近1,这意味着,如果我们使用了四边形单元,则最好是正方形单元;如果使用了三角形单元,则最好是等边三角形。
当然,对于一个复杂的零件而言,我们很难保证每个单元都满足这些要求,但是,我们一定要确保,在我们所关注的地方,例如应力最大的地方,单元形状要接近这一点,否则,我们得到的解就是不可相信的。
但是上述结果也告诉我们,即便是最好形状的单元(情况1,长宽比为1.1),结果的计算精度也不容乐观,其误差达到5.2%,那么,我们可以得到更高精度的解答吗?
单元大小
理论上可以证明,如果插值函数使用了“协调和完整的位移函数”,则当网格尺寸逐渐减小而单元数量增加时,解就会单调收敛。
而且,当单元数目增加时,得到的刚度会降低,并收敛于真实刚度。这就意味着,当单元增加时,得到的位移增加,而收敛于精确位移解。其图形如下:
这里所说的“协调和完整位移函数”,是指:
- 近似函数式一般是多项式;
- 近似函数在单元内要保持连续;
- 近似函数应提供单元间的连续性,包括离散单元每一个节点所有自由度都应该是连续的,二维单元和三维单元沿着公共边界线和公共面必须是连续的。既能够保证单元内的连续,又能够保证单元间的连续的形函数称为协调函数。
- 近似函数应考虑刚体位移和单元内的常应变状态。即有常数项保证刚体运动(无应变的运动),而有一次项保证有常应变状态发生。这是形函数的完整性问题。
例如:对于一维单元而言,若取形函数
则同时满足上面四个条件,称为协调且完整的位移函数。
一般来说,我们所用的单元使用的位移函数都满足上述四个条件,所以从理论上来说,只要网格加密,就可以收敛于真实解。
为了验证上述理论的真实性,我们选用了一个材料力学中的例子来做仿真。该例子如下:
T形截面铸铁梁的载荷和截面尺寸如图所示。铸铁的许用拉应力为[σt]=30MPa,许用压应力为[σc]=160MPa。已知截面对形心轴z的惯性矩为Iz=763cm4,y1=52mm,校核梁的强度。铸铁的弹性模量为100GPa,泊松比为0.25。
使用材料力学的理论进行求解,简要过程如下:
解:
最大正弯矩在截面C上
最大负弯矩在截面B上
B截面
C截面
使用ANSYS进行分析,使用BEAM188单元,首先创建如图所示的几何模型
然后分别对各段直线加密网格划分,得到的结果如下:
上表中,第一列是划分的单元数;第二列是最大的压应力;第三列是最大的拉应力。可以看到,随着单元数目的增加,最大拉伸,压缩应力的绝对值都在增加。
从材料力学得到的精确解,最大的压应力是-46.2MPa,最大的拉应力是28.8MPa。这样,当单元数增加到64个时,压应力的误差是 (46.2-45.7)/46.2 =1.1%;拉应力的精度是 (28.8-28.6)/28.8=0.7%。此时精度已经相当高了。
可以明显的看出,随着单元数目的增加,应力解的确是在逐渐逼近真实解。从这个方面来说,加密网格的确是提高计算精度的有效方法。
这也意味着,我们在有限元仿真中,如果要得到精确的结果,必须不断细分网格,直到结果收敛。否则,我们的得到结果就是不可信的。
如果你想学习、了解更多的有限元学习方法,欢迎关注技术邻直播《如何入门有限元技术》,希望入门学习有限元技术的企业工程师及高校在校生与科研工作者与爱好者都可以来参与,搜索技术邻APP免费参加!
,