一、未对整体网络进行前瞻性规划

目前千兆网络已经开始普及,但还有很多公司需要继续使用百兆到桌面的网络连接。例如,一些公司需要搬迁到新的办公地点,这就必须对网络线路进行重新部 署,这时是应该采用可以满足当前应用的传统的网线技术,还是选择在未来数年内可以持续升级的新型网线技术,就会摆在我们的面前。需要我们注意的是,在项目 运行过程中,人力资源成本才是最高昂部分。虽然在实际工程的实施过程中选择较高级的布线方案看似合理性不是很好,但我们建议大家还是要尽可能的考虑使用质 量较好的产品。这样会在很长一段时间内,让你的企业不至于在面临更高网络需求时出现尴尬。因此,确保所使用的网络布线技术不会过早的落伍,也是网络布线人 员必须要考虑的问题。

二、语音和数据业务使用不同线路

考虑到成本的问题,很多公司以前都会在语音和数据业务中使用不同规格和类型的网线。语由于语音业务对于线路状况的要求并不很高,只要使用单根电线即可达标,所以为语音业务提供较便宜的线路就可以保证数据线路获得预算中较大部分的资金。

三、没有对线路进行有效管理

通常情况下,大家都会认为增加线路数量会给现有系统带来帮助。梯形机架的增加以及随之而来基于机架的线路管理等工作确实会导致运营成本上升。但也可以让 日常维护工作变得非常简单。需要注意到,线路管理工作并不会因为项目最终安全完成而自动终止,当越来越多的线路被添加进来时,现实情况也会随之改变。因 此,我们要坚持对线缆进行标识,按照颜色分类,或者采取一些其它类型的专门处理,确保在任何情况下都可以轻松地识别出相关线路。

四、网线与电缆形成平行布设

数据线进行传输时采用的是“双绞线”(非屏蔽双绞线)模式。低电压通过电线运行所产生的磁场是通信链的重要组成部分。当非屏蔽网线与电线平行时,就会出 现磁场干扰的问题,这将导致所传输数据中出现大量重复和乱码类信息的情况。在很多案例中,这都会造成在两地之间进行有效传输的失败,传输速率将迅速下降, 频频出现需要重复传输的问题。

如果必须要在电线附近部署网线,就一定要确保以垂直而不是平行的方式通过。曾经的一个案例发生在90年代末,笔者遇到新安装的同轴电缆不能正常工作的情 况,这条线路本来负责连接距离非常近的两座建筑,在经过了各种故障排查后,笔者突然发现两座建筑物之间的架空电力线与同轴电缆缠绕在了一起,因此导致线路 受到了严重的电磁干扰,不能正常传输数据。

监控poe交换机能不能接普通网络(综合布线时应该避免的一些错误)(1)

五、网线与“干扰”设备在同一区域内

在现实环境中,并不是只有电线才能对数据线造成干扰。照明用的荧光灯、电机以及能够产生电场或磁场干扰的相关设备都可以给网线传输数据带来严重影响。因此,在布线时,我们需要确保线路远离这些干扰源所在的区域。

六、不考虑实际距离的限制

在开始布线之前,首先应该确认需要实现连接的距离和范围。以使用普通双绞线进行典型以太网布线为例,在千兆网络中的距离限制为100米。如果公司所选择 的是万兆或者四万兆的技术,就要按照相对应的具体设计距离为标准。举例来说,如果公司打算在超过100米的距离上利用双绞线运行万兆网络,就必须选择6A 或更高等级的网线。

七、违背法律、法规的要求

法律法规在很多方面都会起到决定性的作用,所以,如果不符合地方法规要求,就可能会带来安全风险。举例来说,绝大多数地方都禁止在空冷环境下使用聚氯乙烯外皮的线路。由于聚氯乙烯在燃烧时会产生有毒气体,这可能会给消防人员和其它紧急状况处理人员带来伤害。

如果在部署低电压线路时没有遵从地方法规的要求,企业就可能要面临被罚款甚至拆除并重新布线的严重后果。因此,在工作开始之前,就应该了解自身的责任所在,并确保所有相关承包商都已满足地方法规的要求。

八、忽视对线路进行测试

在布线工作完成后,应该利用各类工具来对每条线路进行测试,以确保它们都可以达到预定要求。涉及的工作包含对传输距离和线缆的具体规格进行验证。如果是千兆网络,还需要对线路进行验证以确保可以达到相应的要求。

监控poe交换机能不能接普通网络(综合布线时应该避免的一些错误)(2)

九、不遵循行业标准

众所周知,每根网线中有八根单独的线路。因此,只要我们可以保证线路两端使用的模式相同,并且类型一致,就可以任意对其进行连接。事实证明,这种看法是 错误的。所以设定行业标准是有其原因的,在布线标准中需要考虑到线路被扭曲以及外部环境方面的影响。如果在布线时没有遵循这些标准,就可能会出现干扰和低 效率等问题,从而给网络整体性能带来负面影响。这里所提到的标准,就是EAI/TIA-568-A和B,它们规定了数据类线路的部署方式。

十、对新增线路未进行合理规划

当我们需要在网络中使用以太网交换机来处理新增加的线路时,需要专门说明的是,在没有进行科学的合理规划之前,贸然使用以太网交换机就将给整个网络带来 未知的因素和不稳定的风险。通常情况下,使用微型交换机的用户往往只需要增加一两个端口,所以并不需要对流量进行规划。而由于增加了额外端口的因素,就有 可能会导致出现问题。如果新服务需要大量网络资源来支持,就要尽量避免出现瓶颈现象。因此,应该引起注意的是,在没有绝对需要采取增加交换机及网络端口的 情况下,就要尽量考虑采取其他方式进行网络增容,比如额外增加新的线路来扩充网络规模。

一个完整的PoE系统包括供电端设备(PSE, Power Sourcing Equipment)和受电端设备(PD, Power Device)两部分。PSE设备是为以太网客户端设备供电的设备,同时也是整个PoE以太网供电过程的管理者,而PD设备是接受供电的PSE负载,即PoE系统的客户端设备,如IP电话、网络安全摄像机、AP及掌上电脑( PDA)或移动电话充电器等许多其他以太网设备。两者基于IEEE 802.3af标准建立有关受电端设备PD的连接情况、设备类型、功耗级别等方面的信息联系,并以此为根据PSE通过以太网向PD供电。

标准的五类网线有四对双绞线,IEEE80 2.3af 允许两种线序供电方法: 一种是在4、5、7、8线对上传输电流,并且规定,4、5为正极,7、8为负极。另一种供电是在1、2、3、6线上传输电源,极性为任意,1、2为正极,3、6为负极或是1、2为负极,3、6为正极,其中的一种供电极性。

监控poe交换机能不能接普通网络(综合布线时应该避免的一些错误)(3)

IEEE802.3af和IEEE802.3at标准

IEEE802.3af的工作过程:

2003 年6 月,IEEE 批准了802. 3af 标准,它明确规定了远程系统中的电力检测和控制事项,并对路由器、交换机和集线器通过以太网电缆向IP电话、安全系统以及无线LAN 接入点等设备供电的方式进行了规定。

1、 检测:一开始PSE在为受电设备供电前,先输出一个低电压来检测受电设备(PD)是否符合IEEE802.3af标准,如果符合标准,一般是在受电设备中,选用24.9K的电阻,来确认符合IEEE802.3af供电标准。

2、 分级:当PSE检测到符合要求的阻值后,会将输出电压进一步提高,来对受电设备进行分级,如果受电设备此时没有回应分级确认电流,PSE默认将受电设备规为0级,为其提供15.4W的输出功率。

3、 供电:经过确认分级后,PSE会向受电设备输出48V的直流电,并确认受电设备不超过15.4W的功率要求,当受电设备超载或短路后,PSE停止为其供电,再次进入检测阶段。

IEEE802.3af标准供电系统的主要供电特性参数为:

直流电压在44~57V之间,典型值为48V。

典型工作电流为10~350mA,典型的输出功率:15.4W。

超载检测电流为350~500mA。

在空载条件下,最大需要电流为5mA。

为PD设备提供3.84~12.95W四个Class等级的电功率请求。

IEEE802.3af的分级参数:

Class 0设备需要的最高工作功率为0~12.95W

Class 1设备需要的最高工作功率为0~3.84W;

Class 2设备需要的工作功率介于3.85W~6.49W;

Class 3设备的功率范围则介于6.5~12.95W。

IEEE 802.3at标准出现的背景

由于IEEE 802.3af规范,受电设备(PD)上的PoE功耗被限制为12.95W,这对于传统的网络受电设备足以满足需求,但随着IP电话以及网络摄像头、双波段接入、视频电话、PTZ视频监控系统等高功率应用的出现,13W的供电功率显然不能满足需求,这就限制了以太网电缆供电的应用范围。为了克服PoE对功率预算的限制,并将其推向新的应用,IEEE成立了一个新的任务组,旨在探求提高该国际电源标准的功率限值的方法。IEEE802.3工作组为了在技术及经济上对IEEE802.3at实现的可能性进行评估,新标准称为 IEEE 802.3at,它将功率要求高于12.95W的设备定义为Class 4,可将功率水平扩展到25W或更高,新标准并在2009年初发布。

监控poe交换机能不能接普通网络(综合布线时应该避免的一些错误)(4)

IEEE 802.3at与802.3af相比,802.3at可输出2倍以上的电力,每个端口的输出功率可在30W以上,就标准而言,两者在功率、分级上有不同的定义。

在IEEE802.3at规定,受电设备PD可以最大到29.95W,PSE将为其提供30W以上的直流电源。PD以Class4分级的电流响应,告诉PSE是否能够为其提供802.3at规定的较高功率。

IEEE802.3at标准供电系统的主要供电特性参数为:

直流电压在50~57V之间,典型值为50V。

典型工作电流为10~600mA,典型的输出功率:30W。

受电设备PD支持Class4的分级。

,