本文既可作为老少皆宜的休闲文章来看,也可作为本科生速成期末考试的灵丹妙药(笑)

线性微分方程不同情形下的通解(微分方程的意义)(1)

庞加莱

我们接着讲微分方程,今天的主要内容是换元法,换元法就是用一种变量替换掉原来的变量,从而达到化简问题的目的。

上一讲我们讲了微分方程得基础知识,想必大家已经清楚了求解,通解特解之间的关系。今天我们来看这样一个问题

线性微分方程不同情形下的通解(微分方程的意义)(2)

我们要做的事情还是把这个等式化成函数:

线性微分方程不同情形下的通解(微分方程的意义)(3)

不过这次我并不想让大家直接去算,我们以dy/dx(y')为高度轴,x和y(f(x))分别为变量建立一个三维坐标系,我想让大家体会一下微分方程为什么被称为微分方程

线性微分方程不同情形下的通解(微分方程的意义)(4)

z轴的物理意义是导数,x,f(x)轴各自独立变化

这个图反映的是导数y’和x,f(x)之间的变化关系,然而y和x之间依然存在其它的内在联系。它只能解析一部分信息甚至里面的很多信息并不存在。

理解了这一点,大家就明白了求解微分方程的必要性,那就是让事情直观起来。

我们知道:

线性微分方程不同情形下的通解(微分方程的意义)(5)

原式化简为:

线性微分方程不同情形下的通解(微分方程的意义)(6)

线性微分方程不同情形下的通解(微分方程的意义)(7)

合并同类项,可得:

线性微分方程不同情形下的通解(微分方程的意义)(8)

线性微分方程不同情形下的通解(微分方程的意义)(9)

我们说

线性微分方程不同情形下的通解(微分方程的意义)(10)

c为任意常数

就是原方程的通解,它是一簇曲线。

C随便取一个具体的数,叫原方程的特解。

这是一个什么样的曲线簇呢?(我只画一个特解给大家看看样子)

线性微分方程不同情形下的通解(微分方程的意义)(11)

可以说,我们把复杂的多变量函数简化成了简单的单变量函数:

线性微分方程不同情形下的通解(微分方程的意义)(12)

理解了上面那个问题,我们再来看一个微分方程

线性微分方程不同情形下的通解(微分方程的意义)(13)

你不觉得这个微分方程很有趣吗?

我们依然以dy/dx(y')为高度轴,x和y(f(x))分别为变量建立一个三维坐标系:

线性微分方程不同情形下的通解(微分方程的意义)(14)

z轴的物理意义是导数,x,f(x)轴各自独立变化

这个图反映的还是导数y’和x,f(x)之间的变化关系,然而y和x之间依然存在其它的内在联系。它只能解析一部分信息甚至里面的很多信息并不存在。

好了,现在我们来计算它的解析解:

线性微分方程不同情形下的通解(微分方程的意义)(15)

原式可以变形为这样,

线性微分方程不同情形下的通解(微分方程的意义)(16)

大家看看,前人是多么有智慧啊,我们虽然学的来知识,却学不来智慧:

整理可以得到:

线性微分方程不同情形下的通解(微分方程的意义)(17)

对上面这个公式两边同时积分:

线性微分方程不同情形下的通解(微分方程的意义)(18)

u换成x y,可得:

线性微分方程不同情形下的通解(微分方程的意义)(19)

算到这里,我们似乎难以继续往下算了,它是隐函数就是说y包含在了x和y的同时变化里,想把这个等式化成y=f(x)是非常困难的

我们就用软件看看这个函数长什么样子吧:

线性微分方程不同情形下的通解(微分方程的意义)(20)

,