目前的雷达都在接收机输出端采用某种形式的模拟到数字(A/D)转换。数字化输出极大地便利了后续的信号处理和显示处理。

A/D转换器提供表征雷达接收机输出电压在离散时间的数字值序列。通常,输出电压是定期采样的,在被转换成数字形式过程中采样值被保存在采样和保持电路(S/H)中。

S/H通常由一个电容(用来保持电压)和一个电子开关(用来断开输入)组成。然后,可以在数字信号处理器中处理以二进制形式表示数字信号,或用于驱动数字显示器。

最早的A/D转换器设计成在下变频到的低的中频(IF)输出后进行采样,在模拟雷达中这个信号被称为视频输出,因为它可以直接驱动雷达显示器。所选择的采样率与雷达的距离门相似,因此采样序列代表了不同距离的雷达输出。

这种方法要求所有的雷达脉冲匹配滤波在A/D转换之前以模拟的形式进行。虽然这种方法对脉冲范围小的雷达是有效的,但复杂的多功能雷达需要一系列滤波器,这些滤波器很容易使接收机的变得复杂。

现代A/D转换技术使能够采用更高的采样率,并在更高的中频进行数字化。这样就可以采用更多的数字化雷达滤波,这是非常有益的,因为数字处理是容易重构和稳定的。

两个独立的A/D转换器同时数字化两个混频器的输出,提供I和Q值。这种方法只需要低频A/D转换器,这样就更容易实现所需的动态范围。然而,这是一个复杂的模拟电路设计,因为这两个信号路径必须进行增益、相位和延迟精确匹配。这在工程上很难实现,通常使用注入的测试信号来计算路径匹配校正值,这是一种复杂的校正技术。

实现相同结果的另一种方法是中频采样和使用数字下变频(如下图)。在这种结构中,采用了一个较高频率的A/D转换器。然后,ADC的输出乘以数字等效的LO,它可以是一系列的0、 1、-1(避免高速数字乘法器的需要),这种方法使用希尔伯特变换。然后,对两个生成的数字数据流进行数字低通滤波,就像在模拟系统一样,生产I和Q输出。

雷达接收机和通信接收机区别(雷达接收机的数字化)(1)

这种设计在物理上比模拟方法简单,避免了精确平衡电路或复杂校准的需要。然而,它需要一个更高速度A/D转换器,从而带来动态范围降低。对于相干系统来说,在模拟和数字下变频之间的选择是一个复杂的权衡,但是今天A/D转换器已经大大改进这种数字架构的性能。

雷达接收机和通信接收机区别(雷达接收机的数字化)(2)

这是一个现代的中频数字化器的实例。它由单块双面印制电路板和表面安装元件组成。较小的深色的器件是A/D转换器,大的银色器件是实现数字下变频和数字滤波的现场可编程门阵列(FPGA)。

,