1、圆内接多边形定义

多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫这个多边形的外接圆。

2、圆内接四边形定义

四边形的所有顶点都在同一个圆上,这个四边形叫圆内接四边形,这个圆叫这个四边形的外接圆。

3、判定定理

如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆).

PS:推论:如果四边形的一个外角等于它内对角,那么这个四边形的四个顶点共圆.

3、性质定理

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

PS:利用圆周角等于圆心角一半来证明。

练习题

1.下列四边形中一定有外接圆的是(   ) 

A. 对角线相等的四边形

B. 菱形

C. 直角梯形

D. 等腰梯形

2.四边形ABCD内接于圆,∠A:∠B:∠C:∠D= 5:m:4:n,则m,n满足的条件是(   )

A.5m=4n

B.4m=5n

C.m n=9

D.m n=180°

3.圆上四点A、B、C、D分圆周为四段弧,

圆的内接四边形对角互补(圆的内接四边形)(1)

=1:2:3:4,则圆内接四边形的最大内角为 ( )

练习题答案

1、D 2、C 3、126°

来源:公众号:初中数学知识点大全

,