-01-规律1,今天小编就来说说关于初中几何添辅助线口诀?下面更多详细答案一起来看看吧!
初中几何添辅助线口诀
-01-
规律1
如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
规律2
平面上的n条直线最多可把平面分成〔n(n 1)/2 1〕个部分。
规律3
如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
规律4
线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
规律5
有公共端点的n条射线所构成的角的个数一共有n(n-1)个。
规律6
如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。
规律7
如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
规律78
有中线时延长中线(有时也可在中线上截取线段)构造平行四边形。
规律79
当已知或求证中,涉及到以下情况时,常构造直角三角形。
(1)有特殊角时,如有30°、45°、60°、120°、135°角时。
(2)涉及有关锐角三角函数值时。
构造直角三角形经常通过作垂线来实现。
-05-
规律80
当已知条件中有切线时,常作过切点的半径,利用切线的性质定理证题。
规律81
两圆相交时,常连结两圆的公共弦。
规律82
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
规律83
任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
规律84
三角形的面积等于任意两边与它们夹角正弦之积的一半。
规律85
等腰直角三角形斜边的长等于直角边的√2倍。
规律86
在含有30°角的直角三角形中,60°角所对的直角边是30°角所对的直角边的√3倍。
规律87
直角三角形中,如果较长直角边是较短直角边的2倍,则斜边是较短直角边的√5倍。
规律88
圆中解决有关弦的问题时,常常需要作出圆心到弦的垂线段(即弦心距)这一辅助线,一是利用垂径定理得到平分弦的条件,二是构造直角三角形,利用勾股定理解题。
规律89
有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角。
规律90
有弦中点时常连弦心距。
规律91
证明弦相等或已知弦相等时常作弦心距。
规律92
有弧中点(或证明是弧中点)时,常有以下几种引辅助线的方法:
(1)连结过弧中点的半径
(2)连结等弧所对的弦
(3)连结等弧所对的圆心角
规律93
圆内角的度数等于它所对的弧与它对顶角所对的弧的度数之和的一半。
规律94
圆外角的度数等于它所截两条弧的度数之差的一半。
规律95
有直径时常作直径所对的圆周角,再利用直径所对的圆周角为直角证题。
规律96
有垂直弦时也常作直径所对的圆周角。
规律97
有等弧时常作辅助线有以下几种:
(1)作等弧所对的弦
(2)作等弧所对的圆心角
(3)作等弧所对的圆周角
规律98
有弦中点时,常构造三角形中位线。
规律99
圆上有四点时,常构造圆内接四边形。
,