1. 如图所示,一物块沿倾斜角为,我来为大家科普一下关于动能定理典型例题及做题方法?以下内容希望对你有帮助!

动能定理典型例题及做题方法(动能定理及应用)

动能定理典型例题及做题方法

1. 如图所示,一物块沿倾斜角为

的斜坡向上滑动,当物块的初速度为v时,上升的最大高度为H;当物块的初速度为

时,上升的最大高度记为h,重力加速度大小为g。物块与斜坡间的动摩擦因素和h分别为

动能定理知识点

一、动能

如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.

,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理

做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量.

1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小.

3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.

4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和.

5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理.

6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.

7.对动能定理中的位移与速度必须相对同一参照物.

三、由牛顿第二定律与运动学公式推出动能定理

设物体的质量为m,在恒力F作用下,通过位移为S,其速度由v0变为vt, 则:根据牛顿第二定律

① 根据运动学公式

由①②得:

四、应用动能定理可解决的问题

恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解一般比用牛顿定律及运动学公式求解要简单的多.用动能定理还能解决一些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动等问题.