威尔逊定理:设p为素数,则p整除(p-1)! 1.
威尔逊(John Wilson,1741-1793)曾是剑桥大学的一名高材生,后来当了律师和法官,但他在数论中却作出了一个重要的发现。当他还是学生的时候,他叙述了一个至今仍以他的名字命名的定理:对任意素数p,均有p整除(p-1)! 1;而且如果(q-1)! 1能被q整除,则q必然也是素数。这是数论中最为基本而重要的定理之一,它的意义首先在于给出了一个正整数为素数的充分必要条件,因而在理论上就完全解决了有关素数的判别问题。当然,威尔逊并没能证明自己的这个定理,他只是猜想其正确性,而且就此事专门写信请教当时著名的英国数学家华林(E.Waring,1734-1798)。有趣的是,华林本人也没能够证明威尔逊定理,他只是在自己1770年出版的名著《代数沉思录》中公布了这条定理。随后,在1773年,法国大数学家拉格朗日(Lagrange,1736-1813)才第一个给出了威尔逊定理的严格证明。 威尔逊并不是一个数学家,他对数学的贡献也只限于此,却能以这样一个基本定理而流芳百世,这多少是有点令人羡慕和惊奇的。其实威尔逊并不是第一个做出这一猜想的人,德国数学家莱布尼茨(Leibniz,1646-1716)在1682年就已经发现了它。据说威尔逊还认为他的这个优美定理永远不会被证明,因为人类没有好的符号来处理素数。后来,当古今最伟大的数学家高斯听说了威尔逊的观点后,仅仅站着想了五分钟,高斯就证明了威尔逊定理!为此,高斯批评威尔逊说:“他需要的是概念,而不是符号。” 下面我们使用同余的概念给出威尔逊定理的证明,读者将看到它是多么的简洁明快。
------本文完------
本文编辑:郎培华
往期精彩:
静态反馈与动态反馈之间有什么关系呢?(二)英文赏析06转发一篇文章:山西怎么办?静态反馈与动态反馈之间有什么关系呢?(一)滑模控制及其抗扰原理对于给定的区间[a,b],如何判断其中是否存在素数?一页纸告诉你什么是卡尔曼滤波香农熵(Shannon entropy)公式
控制系统的所有性质在可逆线性变换下仍保持不变吗?
Luenberger 观测器和分离性原理
动态反馈的优越性
Hurwitz矩阵和耗散矩阵是等价的吗?
中国剩余问题
高增益与干扰抑制
听院士报告--数学的春天来了,机遇在哪里?
中国—芬兰联合课程06—数值仿真
证明开普勒三大定律
内模原理与输出调节
闲聊黎曼几何
自抗扰控制举例
一个神秘的常数
关于控制学科发展的若干思考
PID 控制浅谈
什么是卡尔曼滤波?
卡塔兰猜想与柯召
波动方程的Matlab数值模拟
,