作者 | 利荣 Bruce
编辑 | 德新
做一项好用的打灯变道功能,这个任务难倒了一大批车企。
如果你的车售价在20万元以下,那打灯变道基本上和“好用”二字无缘了,仅仅可以算得上“能用”,它可能会经常出现“想变道时变不过去、不想变道瞎变”的情况。
只有那些售价超过20万元的车,才有机会体验到相对好用的打灯变道功能。这里的好用,指的是打灯变道过程中体感舒适,你会感觉到自己的车像个老司机一样,可以在和相邻车道的车辆博弈后轻松胜出。
为什么好用的打灯变道这么少,以前的方案都是什么样子的,做一个好用的打灯变道功能应该怎么入手?围绕这些问题,我们向主机厂、智驾方案供应商、芯片公司、自动驾驶域控制器供应商进行了一番调研。
交流完发现,打灯变道的研发难点,绝不只是感知硬件和方案成本的问题,而是需要进一步提升感知、规控算法的能力。更深层的,做一项好用的打灯变道功能,还需要车企建立一套能够持续学习人类驾驶行为的认知模型。
如果说传统的打灯变道方案做到了及格分,今天用户心中期待的打车变道,则需要无限接近满分。
目前,打灯变道采用的主流方案是1V5R,包含1个摄像头、1个前向毫米波雷达和4个角雷达。
这一方案的好处是传感器部件少,成本低。
缺点也很明显。
“打灯变道时,侧后方的感知主要依靠毫米波雷达,而毫米波雷达的探测距离和精度并不好。对侧面尤其是平行的静态物体的感知性能有限。而且,毫米波雷达对于目标物的尺寸、朝向和速度很难估算准确。” 毫末智行技术总监潘兴告诉XEV研究所。
毫米波雷达的感知缺陷,会导致进入下一个规控环节时出现噪声,最终影响变道决策。
打灯变道方案还有一个问题,那就是角雷达性能不稳定。
东风汽车自动驾驶负责人边宁向XEV研究所表示:“从量产角度讲,打灯变道方案中配备的角雷达,国内做的都不好,从而导致识别能力差。现在真正做得好的是海拉的角雷达,国内角雷达技术比较落后,只能做盲区监测、预警等功能。一旦涉及到变道,国内角雷达性能表现相对较差。”
实际上,1V5R方案对于实现打灯变道来说,在行业里属于低配方案。
为了做出好用的打灯变道方案,行业里找到了一种解决路径,那就是通过增加感知硬件,来弥补毫米波雷达的不足。
周视摄像头登场。
地平线产品总监吕鹏认为,“周视摄像头对相邻车道的检测距离和检测精度都会大幅提升。因为毫米波雷达在跨越两个车道时检测能力较弱,周视摄像头的感知检测距离较长,能够准确识别车道,这就提升了变道的成功率和安全性。”
不过,增加周视摄像头后,就需要用到更多的算力,也就需要引入更多自动驾驶芯片,方案成本会进一步提升。
传统的1V5R方案成本大概在1000 - 2000元之间。
增加周视感知摄像头和自动驾驶芯片后,比如,采用2颗地平线征程3 1V5R 周式感知的方案,整体系统方案的成本接近4000元,基本上翻了一倍。
再向上探,其实还有更高配的方案,比如7V5R,甚至是7V5R 侧向两颗补盲激光雷达,这些高配的方案可以支持实现自动打灯变道。
但是,高配方案已经不能算是打灯变道的专用方案。
这些高配方案中的感知硬件,比如激光雷达,对于打灯变道来说是大材小用。
高配方案主要是为了实现城市领航辅助驾驶等功能,属于在通往高阶自动驾驶途中,捎带着解决了打灯变道,相当于降维打击。
总的来说,一个好用的打灯变道功能,需要更高配的传感器和更大的芯片算力,成本也相应水涨船高较高,考验着车企和用户的承受力。
德赛西威研究院院长黄力向XEV研究所表示,“目前打灯变道表现比较好的车一般是搭载20万元以上的车型上。至于15 - 20 万区间的汽车,还没有非常好的打灯变道功能出现。15到20万区间的车主要聚焦在纵向或者横向控制,也就是 ACC、LCC等功能。”
不过别担心,多数汽车业内人士认为,未来两年内好用的打灯变道方案就会搭载在15-20万的车上。
硬件层面的问题,砸钱增加配置就能解决,更难的是软件层面也在限制打灯变道功能的进化。
仍然以传统的1V5R方案进行分析。
常规的打灯变道方案,主要通过后融合的方法,包括跟踪等,来对目标物进行感知分析。但是单摄像头有个缺点是,很多障碍物在跟踪时会跟丢,或者被截断导致看得不准,感知效果大打折扣,从而造成对障碍物的朝向、速度估算不准,最终对变道效果产生很大的影响。
Minieye技术副总裁郑伟告诉XEV研究所,量产车的打灯变道方案中,视觉是一个必不可少的模块。“现在的解决方案是用BEV做周视感知,360°的感知,视觉确保语义的连续性,毫米波雷达负责测距,有些方案中会用到激光雷达,是为了更精准的测距和冗余性。”
BEV全称Bird's Eye View,中文名为鸟瞰图,可以用来解决对于远处目标物的测距不准的问题,以及解决一些近处目标物的截断问题,进而解决跨传感器的融合和跟踪难题。
但问题是,国内能够提供类似的BEV感知方案的供应商太少了。
除了蔚小理和毫末智行等少数玩家建立了感知算法自研能力,大多数车企的感知算法研发能力并不扎实,而且能够提供出色的感知方案的供应商也不多。
即便过了感知环节这一关,打灯变道还面临规控环节的挑战,需要系统给出适合的变道策略。
毫末智行的潘兴认为,目前许多车辆的打灯变道功能,在变道时要么特别保守,要么特别激进,体感效果都不太好。比如特斯拉在打灯变道时给人的感觉就是激进,由于要避免交通事故,而大多数车企在打灯变道时的策略又会显得保守,很少去和其他的车辆进行博弈。
如果在高速场景下,激进或者保守的打灯变道策略也许还能接受。但如果进入城市场景,任何不像老司机的变道策略都会让用户感觉到不好用。
因为,城市内的道路场景丰富,会涉及到和更多的车辆进行交互、博弈,完全靠规则式的变道策略,基本上很难让用户满意。
怎么解决这个问题?
一些公司比如毫末智行,会借助人类驾驶的数据,对变道策略的决策算法进行优化。通过模型去学习人怎么开,再通过模型体现在打灯变道的功能上,让自动驾驶系统学习成熟的人类驾驶员在变道时的博弈过程,并对系统的认知进行优化,保证变道策略和人类驾驶更加接近。
人类驾驶数据的来源比较复杂,这就又涉及到对场景的识别和理解。毫末智行的解决方案是,首先会对场景进行人工划分,再用机器进行非语义级的划分。最后,在每个场景内,进行动作的拟合。
简单来说,就是让认知模型学习更好的人类驾驶行为,通过模仿和学习,再形成系统的驾驶风格。
潘兴告诉我们,现在许多车企都在推进数据驱动型乃至学习型的规控算法。其中,学习型的规控系统还处于早期阶段,不像感知模型已经非常成熟。
如果说感知看的的是客观世界,认知看到的就是千人千面。
“目前的自动驾驶策略都是比较一致的,未来最终还是要实现千人千面。为男士、女士、20岁、40岁用户提供的自动驾驶策略会有区别。在这种情况下,数据的多样性、规模量是一个重要的胜负手。”潘兴说。
所以,建立数据回传机制后,卖出更多搭载好用的打灯变道功能的车,自然会回传更多的用户数据,进而用来优化打灯变道功能,有助于卖出更大规模的车,这个正向循环会让领先的车企越跑越快。
让打灯变道难用的,除了这些功能本身能力不足,还有一方面的原因是,用户体验完之后觉得难用。
有可能是车企在设计打灯变道方案时忽略了和用户的交互。比如,在打灯变道过程中,没有通过车机界面、语音交互等方式让用户注意到变道已经启动。
也有可能,这套打灯变道方案忽略了用户的心理感受。
比如,打灯变道功能本身没有问题,但是用户在变道时,由于对功能不信任进行了接管,或者觉得变道太墨迹进行了接管,又或者是变道时给用户造成了恐慌或者不舒服,用户也会进行接管。
种种问题如果得不到解决,最终就会让用户给出结论——打灯变道不好用,然后减少使用频次。如果得不到解决,最终就会让用户给出结论——打灯变道不好用,然后减少使用频次。
从地平线的角度看,吕鹏认为背后的原因是,“主机厂通常会与多家供应商进行合作,智驾方案会选择一家供应商,车机方案选择另一家,车机上的交互方案再选择一家。如何协调这几家供应商做出一项好用的交互,对车企来说仍然是一件有挑战的事情。”
站在车企一端,边宁也给出了一些方案建议,“目前,对于人机交互而言,只有安全要求,没有标准。一个好用人机交互要让驾驶员有一个适应的过程,当驾驶员开启打灯变道后,通常希望中控屏上能够显示整个变道的动态过程。比如,可以将从左边道路变到右边道路的系列动作展示出来。除了动态展示以外,用户还希望中控屏上能够显示整体交通流状况,提醒人们注意附近的车辆情况。”
最后,让打灯变道难用的原因,还和传统车企的转型节奏有关。
当前,许多传统车企的核心业务仍然是燃油车,而打灯变道对于燃油车的控制,比电动车遇到的挑战要大很多。
电动车的控制很精准,响应很快,燃油车做不到同样精准度的控制,决策链路会比较长。而且,电动车接口非常统一,油车的接口则由于供应商太多而无法统一。算法层面,也要求燃油车要考虑延迟和无法精准控制带来的影响,调参要调得更好,工程改造的工作量也比电动车要大。
正是拖着燃油车包袱,拿不到用户使用打灯变道等功能时的数据等等因素,让大多数车企在推出打灯变道功能时,显得四处掣肘。
其实,今天我们能用到的大多数打灯变道功能,方案技术在两年前推出。至于要看到大多数车企的好用的打灯变道功能,正如上面提到的,可能还要再等两三年。
令人庆幸的是,打灯变道也不是并非全军覆没。
目前,已经有少数玩家比如蔚小理、长城旗下魏牌和上汽旗下智己等品牌的车型,正在通过更高配置的感知方案和自研算法,顺利打通打灯变道这一关。并正在朝着高阶方案演进,比如各家正在争夺的城市领航辅助功能。
剩下的大多数车企,可能仍然在权衡打灯变道方案的成本、算法和数据等之间的关系。眼下,智能化的趋势已经不可逆转,虽然打灯变道仅仅是入门功能,但也是通往高阶自动驾驶的基础。所以,别等了,车企们。