当前位置:脚本大全 > > 正文

python在dataframe添加数据(使用Python向DataFrame中指定位置添加一列或多列的方法)

时间:2022-04-02 16:40:22类别:脚本大全

python在dataframe添加数据

使用Python向DataFrame中指定位置添加一列或多列的方法

对于这个问题,相信很多人都会很困惑,本篇文章将会给大家介绍一种非常简单的方式向DataFrame中任意指定的位置添加一列。

在此之前或许有不少读者已经了解了最普通的添加一列的方式,如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • import pandas as pd
  •  
  • feature = pd.read_csv("C://Users//Machenike//Desktop//xzw//lr_train_data.txt", delimiter="\t", header=None, usecols=[0, 1])
  • feature.columns = ["a","b"]
  • print(feature.head())
  • feature['c']='1'
  • print(feature.head())
  • 这种添加方式得到的结果如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  •      a     b
  • 0 4.459256 8.225418
  • 1 0.043276 6.307400
  • 2 6.997162 9.313393
  • 3 4.754832 9.260378
  • 4 8.661904 9.767977
  •      a     b c
  • 0 4.459256 8.225418 1
  • 1 0.043276 6.307400 1
  • 2 6.997162 9.313393 1
  • 3 4.754832 9.260378 1
  • 4 8.661904 9.767977 1
  • 同样的也会有人想到concat()函数(关于concat()函数的更多介绍,可以参考我的另外一篇博客《在Pandas中DataFrame数据合并、连接(concat、merge、join)的实例》),如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • import pandas as pd
  •  
  • feature = pd.read_csv("C://Users//Machenike//Desktop//xzw//lr_train_data.txt", delimiter="\t", header=None, usecols=[0, 1])
  • feature.columns = ["a","b"]
  • print(feature.head())
  • feature = pd.concat([feature, pd.DataFrame(columns=list('c'))])
  • print(feature.head())
  • 利用concat()函数添加的结果如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  •      a     b
  • 0 4.459256 8.225418
  • 1 0.043276 6.307400
  • 2 6.997162 9.313393
  • 3 4.754832 9.260378
  • 4 8.661904 9.767977
  •      a     b  c
  • 0 4.459256 8.225418 NaN
  • 1 0.043276 6.307400 NaN
  • 2 6.997162 9.313393 NaN
  • 3 4.754832 9.260378 NaN
  • 4 8.661904 9.767977 NaN
  • 上述两种方法添加一列存在一个弊端,那就是只能在DataFrame的末尾即最后一列添加。但是在有些情况下,我们需要在DataFrame的第一列或中间列位置添加新的一列,那么,有没有一种方法可以指定位置添加一列呢?答案是肯定的,这就是本文一开始所说的那种及其简单的方法。

    如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • import pandas as pd
  •  
  • feature = pd.read_csv("C://Users//Machenike//Desktop//xzw//lr_train_data.txt", delimiter="\t", header=None, usecols=[0, 1])
  • feature.columns = ["a","b"]
  • print(feature.head())
  • feature = feature.reindex(columns=list('cab'), fill_value=1)
  • print(feature.head())
  • 上面代码中的使用了reindex()方法,reindex()方法可以添加一列或多列数据,并且可以指定列的位置,也可以对原先存在的列进行重排。方法中的columns属性控制着列的位置,c是添加的一列,其位于a和b前面,这说明c列是新数据框的第一列,fill_value属性指定的是添加一列的值,其结果如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  •      a     b
  • 0 4.459256 8.225418
  • 1 0.043276 6.307400
  • 2 6.997162 9.313393
  • 3 4.754832 9.260378
  • 4 8.661904 9.767977
  •   c     a     b
  • 0 1 4.459256 8.225418
  • 1 1 0.043276 6.307400
  • 2 1 6.997162 9.313393
  • 3 1 4.754832 9.260378
  • 4 1 8.661904 9.767977
  • 同时,reindex()方法也可以同时添加多列(其实上面的concat()函数也可以添加多列,添加方式与reindex()一样),如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • import pandas as pd
  •  
  • feature = pd.read_csv("C://Users//Machenike//Desktop//xzw//lr_train_data.txt", delimiter="\t", header=None, usecols=[0, 1])
  • feature.columns = ["a","b"]
  • print(feature.head())
  • feature = feature.reindex(columns=list('cabd'), fill_value=1)
  • print(feature.head())
  • 我们添加了c、d两列,结果如下:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  •      a     b
  • 0 4.459256 8.225418
  • 1 0.043276 6.307400
  • 2 6.997162 9.313393
  • 3 4.754832 9.260378
  • 4 8.661904 9.767977
  •   c     a     b d
  • 0 1 4.459256 8.225418 1
  • 1 1 0.043276 6.307400 1
  • 2 1 6.997162 9.313393 1
  • 3 1 4.754832 9.260378 1
  • 4 1 8.661904 9.767977 1
  • 你们在此过程中遇到了什么问题,欢迎留言,让我看看你们都遇到了哪些问题。

    以上这篇使用Python向DataFrame中指定位置添加一列或多列的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持开心学习网。

    原文链接:https://blog.csdn.net/gdkyxy2013/article/details/81977321

    标签:
    上一篇下一篇

    猜您喜欢

    热门推荐