当前位置:脚本大全 > > 正文

卷积神经网络python实现(Python通过TensorFlow卷积神经网络实现猫狗识别)

时间:2022-01-14 02:52:03类别:脚本大全

卷积神经网络python实现

Python通过TensorFlow卷积神经网络实现猫狗识别

这份数据集来源于Kaggle,数据集有12500只猫和12500只狗。在这里简单介绍下整体思路

  1. 处理数据
  2. 设计神经网络
  3. 进行训练测试

1. 数据处理

将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次。

新建数据处理文件 ,文件名 input_data.py

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • import tensorflow as tf
  • import os
  • import numpy as np
  • def get_files(file_dir):
  •  cats = []
  •  label_cats = []
  •  dogs = []
  •  label_dogs = []
  •  for file in os.listdir(file_dir):
  •  name = file.split(sep='.')
  •  if 'cat' in name[0]:
  •  cats.append(file_dir + file)
  •  label_cats.append(0)
  •  else:
  •  if 'dog' in name[0]:
  •  dogs.append(file_dir + file)
  •  label_dogs.append(1)
  •  image_list = np.hstack((cats,dogs))
  •  label_list = np.hstack((label_cats,label_dogs))
  •  # print('There are %d cats\nThere are %d dogs' %(len(cats), len(dogs)))
  •  # 多个种类分别的时候需要把多个种类放在一起,打乱顺序,这里不需要
  •  # 把标签和图片都放倒一个 temp 中 然后打乱顺序,然后取出来
  •  temp = np.array([image_list,label_list])
  •  temp = temp.transpose()
  •  # 打乱顺序
  •  np.random.shuffle(temp)
  •  # 取出第一个元素作为 image 第二个元素作为 label
  •  image_list = list(temp[:,0])
  •  label_list = list(temp[:,1])
  •  label_list = [int(i) for i in label_list]
  •  return image_list,label_list
  • # 测试 get_files
  • # imgs , label = get_files('/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/')
  • # for i in imgs:
  • # print("img:",i)
  • # for i in label:
  • # print('label:',i)
  • # 测试 get_files end
  • # image_W ,image_H 指定图片大小,batch_size 每批读取的个数 ,capacity队列中 最多容纳元素的个数
  • def get_batch(image,label,image_W,image_H,batch_size,capacity):
  •  # 转换数据为 ts 能识别的格式
  •  image = tf.cast(image,tf.string)
  •  label = tf.cast(label, tf.int32)
  •  # 将image 和 label 放倒队列里
  •  input_queue = tf.train.slice_input_producer([image,label])
  •  label = input_queue[1]
  •  # 读取图片的全部信息
  •  image_contents = tf.read_file(input_queue[0])
  •  # 把图片解码,channels =3 为彩色图片, r,g ,b 黑白图片为 1 ,也可以理解为图片的厚度
  •  image = tf.image.decode_jpeg(image_contents,channels =3)
  •  # 将图片以图片中心进行裁剪或者扩充为 指定的image_W,image_H
  •  image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
  •  # 对数据进行标准化,标准化,就是减去它的均值,除以他的方差
  •  image = tf.image.per_image_standardization(image)
  •  # 生成批次 num_threads 有多少个线程根据电脑配置设置 capacity 队列中 最多容纳图片的个数 tf.train.shuffle_batch 打乱顺序,
  •  image_batch, label_batch = tf.train.batch([image, label],batch_size = batch_size, num_threads = 64, capacity = capacity)
  •  # 重新定义下 label_batch 的形状
  •  label_batch = tf.reshape(label_batch , [batch_size])
  •  # 转化图片
  •  image_batch = tf.cast(image_batch,tf.float32)
  •  return image_batch, label_batch
  • # test get_batch
  • # import matplotlib.pyplot as plt
  • # BATCH_SIZE = 2
  • # CAPACITY = 256
  • # IMG_W = 208
  • # IMG_H = 208
  • # train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/'
  • # image_list, label_list = get_files(train_dir)
  • # image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
  • # with tf.Session() as sess:
  • # i = 0
  • # # Coordinator 和 start_queue_runners 监控 queue 的状态,不停的入队出队
  • # coord = tf.train.Coordinator()
  • # threads = tf.train.start_queue_runners(coord=coord)
  • # # coord.should_stop() 返回 true 时也就是 数据读完了应该调用 coord.request_stop()
  • # try:
  • #  while not coord.should_stop() and i<1:
  • #   # 测试一个步
  • #   img, label = sess.run([image_batch, label_batch])
  • #   for j in np.arange(BATCH_SIZE):
  • #    print('label: %d' %label[j])
  • #    # 因为是个4D 的数据所以第一个为 索引 其他的为冒号就行了
  • #    plt.imshow(img[j,:,:,:])
  • #    plt.show()
  • #   i+=1
  • # # 队列中没有数据
  • # except tf.errors.OutOfRangeError:
  • #  print('done!')
  • # finally:
  • #  coord.request_stop()
  • # coord.join(threads)
  •  # sess.close()
  • 2. 设计神经网络

    利用卷积神经网路处理,网络结构为

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • # conv1 卷积层 1
  • # pooling1_lrn 池化层 1
  • # conv2 卷积层 2
  • # pooling2_lrn 池化层 2
  • # local3 全连接层 1
  • # local4 全连接层 2
  • # softmax 全连接层 3
  • 新建神经网络文件 ,文件名 model.py

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • #coding=utf-8
  • import tensorflow as tf
  • def inference(images, batch_size, n_classes):
  •  with tf.variable_scope('conv1') as scope:
  •   # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap
  •   weights = tf.get_variable('weights',
  •          shape=[3, 3, 3, 16],
  •          dtype=tf.float32,
  •          initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
  •   biases = tf.get_variable('biases',
  •          shape=[16],
  •          dtype=tf.float32,
  •          initializer=tf.constant_initializer(0.1))
  •   conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
  •   pre_activation = tf.nn.bias_add(conv, biases)
  •   conv1 = tf.nn.relu(pre_activation, name=scope.name)
  •  with tf.variable_scope('pooling1_lrn') as scope:
  •    pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
  •    norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
  •  with tf.variable_scope('conv2') as scope:
  •     weights = tf.get_variable('weights',
  •            shape=[3, 3, 16, 16],
  •            dtype=tf.float32,
  •            initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
  •     biases = tf.get_variable('biases',
  •            shape=[16],
  •            dtype=tf.float32,
  •            initializer=tf.constant_initializer(0.1))
  •     conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
  •     pre_activation = tf.nn.bias_add(conv, biases)
  •     conv2 = tf.nn.relu(pre_activation, name='conv2')
  •  # pool2 and norm2
  •  with tf.variable_scope('pooling2_lrn') as scope:
  •   norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
  •   pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
  •  with tf.variable_scope('local3') as scope:
  •   reshape = tf.reshape(pool2, shape=[batch_size, -1])
  •   dim = reshape.get_shape()[1].value
  •   weights = tf.get_variable('weights',
  •          shape=[dim, 128],
  •          dtype=tf.float32,
  •          initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
  •   biases = tf.get_variable('biases',
  •          shape=[128],
  •          dtype=tf.float32,
  •          initializer=tf.constant_initializer(0.1))
  •  local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
  •  # local4
  •  with tf.variable_scope('local4') as scope:
  •   weights = tf.get_variable('weights',
  •          shape=[128, 128],
  •          dtype=tf.float32,
  •          initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
  •   biases = tf.get_variable('biases',
  •          shape=[128],
  •          dtype=tf.float32,
  •          initializer=tf.constant_initializer(0.1))
  •   local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
  •  # softmax
  •  with tf.variable_scope('softmax_linear') as scope:
  •   weights = tf.get_variable('softmax_linear',
  •          shape=[128, n_classes],
  •          dtype=tf.float32,
  •          initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
  •   biases = tf.get_variable('biases',
  •          shape=[n_classes],
  •          dtype=tf.float32,
  •          initializer=tf.constant_initializer(0.1))
  •   softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
  •  return softmax_linear
  • def losses(logits, labels):
  •  with tf.variable_scope('loss') as scope:
  •   cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \
  •       (logits=logits, labels=labels, name='xentropy_per_example')
  •   loss = tf.reduce_mean(cross_entropy, name='loss')
  •   tf.summary.scalar(scope.name + '/loss', loss)
  •  return loss
  • def trainning(loss, learning_rate):
  •  with tf.name_scope('optimizer'):
  •   optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
  •   global_step = tf.Variable(0, name='global_step', trainable=False)
  •   train_op = optimizer.minimize(loss, global_step= global_step)
  •  return train_op
  • def evaluation(logits, labels):
  •  with tf.variable_scope('accuracy') as scope:
  •   correct = tf.nn.in_top_k(logits, labels, 1)
  •   correct = tf.cast(correct, tf.float16)
  •   accuracy = tf.reduce_mean(correct)
  •   tf.summary.scalar(scope.name + '/accuracy', accuracy)
  •  return accuracy
  • 3. 训练数据,并将训练的模型存储

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 猜您喜欢