python获取特定时间日期的数据

Python提取特定时间段内数据的方法实例

python提取特定时间段内的数据

尝试一下:

  • ?
  • 1
  • 2
  • data['Date'] = pd.to_datetime(data['Date'])
  • data = data[(data['Date'] >=pd.to_datetime('20120701')) & (data['Date'] <= pd.to_datetime('20120831'))]
  • 实际测试

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • '''
  • Created on 2019年1月3日
  • @author: hcl
  • '''
  • import pandas as pd
  • import matplotlib.pyplot as plt
  • data_path = 'one_20axyz.csv'
  • if __name__ == '__main__':
  •   msg = pd.read_csv(data_path)
  • #   ID_set = set(msg['Time'].tolist())
  • #   ID_list = list(ID_set)
  • #   print(len(msg['Time'].tolist()),len(ID_list),len(msg['Time'].tolist())/len(ID_list))#打印数据量  多少秒  平均每秒多少个
  • #   print(msg.head(10))
  • #   left_a = msg[msg['leg'] == 1]['az']
  • #   right_a = msg[msg['leg'] == 2]['az']
  • #   plt.plot(left_a,label = 'left_a')
  • #   plt.plot(right_a,label = 'right_a')
  • #   plt.legend(loc = 'best')
  • #   plt.show()
  •   left_msg = msg[msg['leg'] == 1] #DataFrame
  •   data = left_msg[(pd.to_datetime(left_msg['Time'] ,format = '%H:%M:%S')>= pd.to_datetime('16:23:42',format = '%H:%M:%S')) & (pd.to_datetime(left_msg['Time'] ,format = '%H:%M:%S') <= pd.to_datetime('16:23:52',format = '%H:%M:%S'))]
  • #   print(msg.head())
  •   print(data)
  • 输出:

  • ?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  •      Time ID leg   ax   ay   az     a Rssi
  • 1  16:23:42  5  1 0.6855 -0.6915 0.1120 0.980116  -34
  • 3  16:23:42  5  1 0.6800 -0.6440 0.1365 0.946450  -31
  • 5  16:23:42  5  1 0.7145 -0.7240 0.1095 1.023072  -34
  • 7  16:23:42  5  1 0.7050 -0.6910 0.1080 0.993061  -30
  • 9  16:23:42  5  1 0.7120 -0.6400 0.0920 0.961773  -31
  • 10  16:23:42  5  1 0.7150 -0.6810 0.1290 0.995805  -34
  • 12  16:23:42  5  1 0.7250 -0.6655 0.1890 1.002116  -32
  • 13  16:23:42  5  1 0.7160 -0.7065 0.1000 1.010840  -31
  • 15  16:23:42  5  1 0.7545 -0.6990 0.1715 1.042729  -30
  • 17  16:23:42  5  1 0.7250 -0.6910 0.1325 1.010278  -31
  • 19  16:23:42  5  1 0.7520 -0.7260 0.1820 1.060992  -33
  • 21  16:23:42  5  1 0.7005 -0.7150 0.0605 1.002789  -33
  • 23  16:23:42  5  1 0.7185 -0.6630 0.1430 0.988059  -30
  • 25  16:23:42  5  1 0.7170 -0.7040 0.0920 1.009044  -34
  • 27  16:23:42  5  1 0.7230 -0.6810 0.1060 0.998862  -31
  • 29  16:23:42  5  1 0.7230 -0.6720 0.0940 0.991539  -31
  • 31  16:23:42  5  1 0.6955 -0.6975 0.0720 0.987629  -33
  • 32  16:23:42  5  1 0.7430 -0.6895 0.1495 1.024602  -34
  • 34  16:23:43  5  1 0.7360 -0.6855 0.1200 1.012920  -32
  • 36  16:23:43  5  1 0.7160 -0.7000 0.1330 1.010121  -30
  • 38  16:23:43  5  1 0.7095 -0.7165 0.1090 1.014221  -31
  • 40  16:23:43  5  1 0.7195 -0.6895 0.1270 1.004599  -34
  • 44  16:23:43  5  1 0.7315 -0.6855 0.1000 1.007473  -34
  • 46  16:23:43  5  1 0.7240 -0.7020 0.0960 1.013013  -31
  • 48  16:23:43  5  1 0.7240 -0.7010 0.0970 1.012416  -32
  • 50  16:23:43  5  1 0.7380 -0.6820 0.1480 1.015713  -34
  • 52  16:23:43  5  1 0.7285 -0.6990 0.0990 1.014453  -33
  • 53  16:23:43  5  1 0.7160 -0.7005 0.1630 1.014852  -30
  • 55  16:23:43  5  1 0.7175 -0.6940 0.0735 1.000922  -29
  • 57  16:23:43  5  1 0.7140 -0.7170 0.0960 1.016416  -28
  • ..    ... .. ...   ...   ...   ...    ...  ...
  • 285 16:23:51  5  1 0.0550 -1.0205 0.0955 1.026433  -35
  • 287 16:23:51  5  1 0.0670 -1.0175 0.0915 1.023801  -22
  • 289 16:23:51  5  1 0.0595 -1.0090 0.1025 1.015937  -24
  • 291 16:23:51  5  1 0.0605 -0.9970 0.0905 1.002925  -32
  • 293 16:23:51  5  1 0.0650 -1.0185 0.0740 1.023251  -31
  • 295 16:23:51  5  1 0.0595 -0.9915 0.0945 0.997769  -35
  • 298 16:23:51  5  1 0.0420 -1.0105 0.0970 1.016013  -18
  • 300 16:23:51  5  1 0.0545 -1.0440 0.0795 1.048440  -21
  • 302 16:23:51  5  1 0.0460 -0.9915 0.0765 0.995510  -30
  • 304 16:23:51  5  1 0.0650 -1.0100 0.0810 1.015326  -30
  • 306 16:23:51  5  1 0.0530 -1.0240 0.0765 1.028220  -34
  • 308 16:23:51  5  1 0.0490 -1.0060 0.0785 1.010247  -21
  • 310 16:23:52  5  1 0.0490 -1.0155 0.0760 1.019518  -24
  • 312 16:23:52  5  1 0.0370 -0.9870 0.0660 0.989896  -30
  • 313 16:23:52  5  1 0.0400 -1.0185 0.0435 1.020213  -30
  • 314 16:23:52  5  1 0.0450 -1.0070 0.0540 1.009450  -34
  • 316 16:23:52  5  1 0.0420 -0.9800 0.0595 0.982703  -34
  • 318 16:23:52  5  1 0.0400 -1.0000 0.0595 1.002567  -20
  • 320 16:23:52  5  1 0.0355 -1.0025 0.0635 1.005136  -20
  • 322 16:23:52  5  1 0.0430 -0.9940 0.0735 0.997641  -30
  • 324 16:23:52  5  1 0.0480 -1.0135 0.0640 1.016652  -33
  • 326 16:23:52  5  1 0.0440 -1.0035 0.0670 1.006696  -33
  • 328 16:23:52  5  1 0.0455 -1.0090 0.0600 1.011806  -21
  • 330 16:23:52  5  1 0.0420 -1.0005 0.0605 1.003207  -15
  • 332 16:23:52  5  1 0.0510 -1.0165 0.0670 1.019981  -29
  • 334 16:23:52  5  1 0.0300 -1.0040 0.0460 1.005501  -30
  • 336 16:23:52  5  1 0.0370 -1.0130 0.0500 1.014908  -34
  • 338 16:23:52  5  1 0.0500 -1.0010 0.0530 1.003648  -20
  • 341 16:23:52  5  1 0.0400 -0.9630 0.0615 0.965790  -21
  • 343 16:23:52  5  1 0.0365 -1.0295 0.0410 1.030962  -30
  • [176 rows x 8 columns]
  • 总结

    以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对开心学习网的支持。如果你想了解更多相关内容请查看下面相关链接

    原文链接:https://blog.csdn.net/zhuisaozhang1292/article/details/85207298