对数和对数函数是高中数学的重要内容,是高考的必考知识,需要同学们无条件地掌握。但是很多同学在高一时就没有掌握好对数知识,以至于成为整个高中阶段数学学习的绊脚石。...
利用反函数求导:设y=loga(x) 则x=a^y。根据指数函数的求导公式,两边x对y求导得:dx/dy=a^y*lna所以dy/dx=1/(a^y*lna)=...
对数求导的公式:(loga x)'=1/(xlna)。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a...
复合函数求导公式:①设u=g(x),对f(u)求导得:f(x)=f(u)*g(x),设u=g(x),a=p(u),对f(a)求导得:f(x)=f(a)*p(u)...
对数函数公式有a^X=N→X=logaN。一般地,如果a(a大于0,且a不等于1)的b次幂等于N(N>0),那么数b叫做以a为底N的对数,记作log aN=b,...
函数求导公式:y=x^n, y'=nx^(n-1)y=a^x, y'=a^xlnay=e^x, y'=e^xy=log(a)x ,y'=1/x lnay=lnx...
三角函数求导公式:(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec2x=1+tan2x。三角函数(也叫做圆函数)是角的函数;它们在研...
指数函数的求导公式:(a^x)=(lna)(a^x)部分导数公式:(1)y=c(c为常数) y=0(2)y=x^n y=nx^(n-1)(3)y=a^x;y=a...
指数函数求导公式是(a^x)'=(lna)(a^x)。指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定...
,...
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都...
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x...
函数的定义域是(0,+∞),即x>0。对数函数是6类基本初等函数之一。其中对数的定义:如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=...
概念三要素的比较:指数函数和对数函数都有严格的函数形式:和,其中底数都是在且范围内取值的常数;指数函数的指数就是对数函数的对数,由此指数函数的定义域和对数函数的...
一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。在涉及到对数函数时,一定要注意定义域,即...
对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax =N(a>0,且a≠1),那么数x叫做...
导数公式:y=c(c为常数) y=0、y=x^n y=nx^(n-1) ;运算法则:加(减)法则:[f(x)+g(x)]=f(x)+g(x);求导是数学计算中的...
幂指函数的求导方法,即求y=f(x)^g(x)类型函数的导数。幂指函数既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变...
对数函数的图像都过(1,0)点,指数函数的图像都过(0,1)点;对数(指数)函数的底数大于1时为增函数,大于0而小于1时为减函数;对数函数的图像在y轴右侧,指数...
求函数y=f(x)在x0处导数的步骤:求函数的增量Δy=f(x0+Δx)-f(x0);求平均变化率;取极限,得导数。常见的求导公式有: C'=0(C为常数);...