数乘向量是与一个实数和一个向量有关的一种向量运算,即数量与向量的乘法运算。n个相等的非零向量a相加所得的和向量,叫作正整数n与向量a的积,记为na。从这个狭义的...
...
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。在数学与物理中,既有大小又有方向的量叫做向量,亦称矢量。向量有方向与大小,分为自由向量与固定...
两者的运算结果不同:点乘的运算结果得到的结果为一个标量。叉乘的运算结果为一个向量而不是一个标量;应用范围不同:点乘的应用范围是线性代数,叉乘的应用范围十分广泛,...
古代乘车时居右边陪乘的人。古人乘车“尚左”,即以左方为尊。乘车时尊者在左,御者(驭手)居中,另有一人在右陪乘。陪乘的人就叫“骖乘”,其任务在于随侍尊者,防备车辆...
便乘,网络流行语。淫梦梗,代表“就是啊”。根据语境也可能指跟风,或者发言者复述他人的观点。词语来源:该词出自片中一人物(三浦先辈)附和野兽先辈的询问时所说的话”...
矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间...
在线性代数中,列向量是一个n×1的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向...
倒数等于它本身的数是1或-1。倒数指数学上设一个数x与其相乘的积为1的数,记为1/x,过程为“乘法逆”,除了0以外的数都存在倒数, 分子和分母相倒并且两个乘积是...
法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无...
向量基底是在平面几何中可以表示任意向量a的两个非零向量ee2。向量,亦称矢量。数学中最基本的概念之一。它是速度、加速度、力等这类既有大小,又有方向的量的数学抽象...
中断向量是指早期的微机系统中将由硬件产生的中断入口地址或存放中断服务程序的首地址)。中断向量表是8086系统内存中最低端1K字节空间,它的作用就是按照中断类型号...
方向向量(direction vector)是一个数学概念,空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。应用领域 :解析...
向量a=(x1,y1),向量b=(x2,y2);a·b=x1x2+y1y2=|a...
...
如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。 共线向量的定义:共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a...
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。一个非零向量除以它的模,可得所需单位向量。一个单位向量的平面直角坐标系上的...
正交化会,单位化就是把这个向量化为单位向量。 比如向量(1,2,3)单位化就是:[1/根号下(1^2+2^2+3^2),2/根号下(1^2+2^2+3^2),3...
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。向量是有方向和大小的量,所谓单位化就是保持其方向不变,将其长度化为1。向量...
两个向量α,β正交定义为它们的内积等于0。即 (α,β)=0 或 α^Tβ=0. --α,β默认为列向量。两两正交的向量, 是指向量组中任意两个向量都正交。比如...
如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。这项定理其实说明了平面向量可以沿任意指定的两方向分解,...
向量的三角形法则是向量加法,即向量求和的基本方法之一。向量的三角形法则:已知非零向量a和b, 在平面内任取一点A,作向量AB=向量a,过B点作向量BC=向量b,...