一、公式法
1、如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式,注意等比数列公比q的取值情况要分q=1或q≠1.
2、一些常见数列的前n项和公式:
典型例题1:
二、非等差、等比数列求和的常用方法
1、倒序相加法
三、数列求和的方法
1、一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.
2、解决非等差、等比数列的求和,主要有两种思路:
①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.
②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.
典型例题3:
四、分组转化法求和的常见类型
典型例题4:
五、用错位相减法求和应注意:
1、要善于识别题目类型,特别是等比数列公比为负数的情形;
2、在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.
3、在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.
典型例题5:
六、利用裂项相消法求和应注意
典型例题6:
,