不定积分∫dx/(x^4 1)的计算步骤
本题通过凑分、换元、裂项、反正切函数导数、幂函数导数等方法和知识,介绍不定积分∫dx/(x^4 1)的主要计算步骤。
※.主要步骤
∫dx/(x^4 1)
=∫dx/(x^4 1)
=(1/2)∫[(x^2 1)-(x^2-1)]dx/(x^4 1),此步骤为对分子进行等量变换,
=(1/2)∫(x^2 1)dx/(x^4 1)- (1/2)∫(x^2-1)dx/(x^4 1),此步骤为裂项,
=(1/2)∫(x^2 1)dx/(x^4 1)- (1/2)∫(x^2-1)dx/(x^4 1),两项分子分母同时除以t^2得,
=(1/2)∫[1 (1/x^2)]dx/[x^2 (1/x^2)]- (1/2)∫[1-(1/x^2)]dx/[x^2 (1/x^2)],
=(1/2)∫d(x-1/x)/[x^2 (1/x^2)]- (1/2)∫d(x 1/x)/[x^2 (1/x^2)],
此步骤为分子凑分法,
=(1/2)∫d(x-1/x)/[(x-1/x)^2 2]-(1/2)∫d(x 1/x)/[(x 1/x)^2-2],此步骤为根据分子对分母进行配方计算,
=(1/2)∫d(x-1/x)/2[(x-1/x)^2/2 1]-(1/2)∫d(x 1/x)/{[(x 1/x)-√2][ (x 1/x) √2]},
此步骤前者对分母提取公因式2,后者使用平方差公式,即:
=(1/2)arctan[(x-1/x)/√2]- (1/4√2){∫d(x 1/x)/[(x 1/x)-√2]-∫d(x 1/x)/[(x 1/x) √2]},
=(1/2)arctan[(x-1/x)/√2]- (1/4√2)ln|[(x 1/x)-√2]/ [(x 1/x) √2]| C.
进行等量变形,则:
所求式
=(1/2)arctan[(x^2-1)/√2x]-(1/4√2)ln|[(x^2 1)-√2x]/ [(x^2 1) √2x]| C.
,