sin0=sin0°=0正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边,今天小编就来聊一聊关于sin0等于多少?接下来我们就一起去研究一下吧!

sin0等于多少

sin0等于多少

sin0=sin0°=0。

正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。

由定义可得:Sin是正弦,对边比斜边,0度角对应的对边长度就是0,而90度对边就是斜边,所以sin90=1。

正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a/sin A=b/sin B=c/sin C

正弦函数的定理在三角形求面积中的运用。

S△=c²sinAsinB/2sin(A+B)(S△为三角形的面积,三个角为∠A∠B∠C,对边分别为a,b,c)。

S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c)。

另外,当sin值在180~360之间会出现负数,在360以上则会重复。

三角函数

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA

即tanA=角A 的对边/角A的邻边

同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA

即sinA=角A的对边/角A的斜边

同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA

即cosA=角A的邻边/角A的斜边

特殊角的三角函数值

(1)sin 0° = 0。cos 0° = 1、tan 0° = 0。

(2)sin 30° = 1/2、cos 30° = √3/2、tan 30° = √3/3。

(3)sin 45° = √2/2、cos 45° = √2/2、tan 45° = 1。

(4)sin 60° = √3/2、cos 60° = 1/2、tan 60° = √3。

(5)sin 90° = 1、cos 90° = 0。

同角三角函数的基本关系式

倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;

商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;

和的关系:sin²α+cos²α=1、1+tan²α=sec²α、1+cot²α=csc²α;

平方关系:sin²α+cos²α=1。

二倍角公式

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα