【摘要】 从软件开发到 AI 领域工程师:模型训练篇

前言

韩剧《王国》,不知道大家有没有看?我一集不落地看完了。王子元子出生时,正逢宫内僵尸作乱,元子也被咬了一口,但是由于大脑神经元尚未形成,寄生虫无法控制神经元,所以医女在做了简单处理后,判断不会影响大脑。这里提到了人脑神经元,它也是 AI 神经网络的研究起源,具体展开讲讲。

人脑中总共有 860 亿个神经元,其中大脑皮层有 160 亿个神经元。大脑皮层的神经元数量决定了动物的智力水平,人的大脑皮层中神经元数量远高于其他物种,所以人类比其他物种更聪明。大象的脑子总共有 2570 亿个神经元,但是其中 98% 的神经元都存在于大象的小脑中,而大象的大脑皮层只有 56 亿个神经元,无法与人类相比。大脑皮层中的神经元数量越大,能耗也越大。人脑每天消耗的能量占人体全部耗能的 25%,这也就是为什么我们每天都要吃多餐,很容易饿的原因。人之所以能够很快超越其他物种,主要是因为人类掌握了烹饪技术,能够在短时间内摄入大量卡路里以支持大脑运转,其他物种则将摄入的卡路里用于维护身体运转,不得不牺牲大脑皮层的神经元数量。

之所以先谈大脑神经元原理,也是为了引出本文的重点–现代 AI 技术。在正式进入 AI 技术前,我先讲讲软件工程师这份工作,因为现在有很多软件工程师准备转入 AI 行业。

软件工程师

我是软件工程师出身,2004 年刚毕业时我写的是 JSP 代码(一种将 Java 语言嵌入在 HTML 代码中的编写方式),工作几年后转入分布式软件技术,再后来进入大数据技术领域,最近的 4 年时间我一直在从事 AI 平台研发工作。

软件工程师的要求,我总体分为基础编码和系统架构两方面,因此我对于软件工程师的考察,特别是校招学生时,为了进一步考察他们的综合能力,我每次都会自己准备面试题,这些题目包括了编程基本概念、算法编程题、操作系统、数据库编程、开源代码阅读、垃圾回收机制、系统架构描述等。

编码的话题展开来可以讲很久,发展历史很悠久,我 15 岁学编程时用的是 Basic 语言,读大学时学的是 C 语言,大学毕业参加工作后第一门用的语言是 Java,其中的各种故事和理解可以写几篇文章,这里不展开谈。

我觉得谈到软件工程师工作,避不开软件架构设计。大众谈软件架构,很多人会认为软件架构就是一堆框架的组合,其实不对,软件架构本身是对于软件实体的组织形式的阐述,使用框架的意义是快速完成软件架构设计,而不是取代软件架构设计,两者本质上不是一类事物,更像是设计图纸和所使用的原材料。软件架构就是通过对软件生命周期的拆分,在符合业务架构的前提下,以达到软件本身访问增长目的的方式。这个增长需要软件开发的增长,也需要软件运行的增长,由此达到所支撑业务的增长。

市面上也确实有很多例如“分布式系统架构”、“微服务架构”等等跟随着潮流的书籍,但是看完后只停留在会采用一些开源框架进行整体框架搭建,我说的是搭建,而不是设计。确实是搭建,你所拥有的能力就好像小孩子搭积木,只会采用固定讨论,或者学得差点,连固定套路都没学会,这样对你的个人能力发展其实没有多大好处,这也是为什么很多程序员在完成了程序员 - 架构师的转型后,没过多久就转为纯管理,或者彻底离开了技术界,因为从来没有大彻大悟理解系统架构。

之所以谈了这么多系统架构相关的工作理解,是因为我认为系统架构师系统化的思维,我们搞 AI 系统也是系统化的思维,从有较强编程能力的系统架构师转 AI 技术,相对容易一些。

AI 工程师

为什么要从软件工程师转行到 AI 产品研发?因为 AI 产品研发有更大的吸引力,因为它更难,难到我们并不确定什么时候才能真正做出来,做出来真正能够可复制的 AI 产品。表面上看它也是一个门槛—一个“可用”且“可复制”的 AI 技术,但因为难度足够大,所以有挑战性,必须不断地改善技术,做全球范围内还没有做出来的技术。搞软件开发时处理的一些问题可能是其他公司已经解决的,并非“人类”都还没有解决的问题。

AI 的研究最早可以被追溯到亚里士多德的三段论,然后莱布尼茨创立了处理逻辑,布尔在布尔代数上的贡献,弗雷德在近代逻辑上的贡献,罗素在逻辑主义方面的贡献,这些工作都是在数据逻辑上的。一般认为,现代 AI 技术讨论,起源于 1956 年在达特茅斯学院召开的夏季研讨会,而这门学科的源头可能是 Alan Turing(阿兰. 图灵) 1948 年在英国国家物理实验室(NPL)写过的一份内部报告,这份报告中提到了肉体智能和无肉体智能,从某种意义上预示了后来符号派和统计派之争,或是 Turing 在 1950 年在哲学杂志《心》(Mind)上发表的文章“计算机与智能”,反正都是 Turing。

可以这么认为,现代 AI 是一系列通用目的技术的总称。现代 AI 技术,主要指基于机器学习(Machine Learning,简称 ML)/ 深度学习(Deep Learning,简称 DL)的一系列方法和应用,这只是 AI 领域的一个分支,也是目前发展最快、应用最广的分支。

机器学习 / 深度学习的原理可以这样理解:建立一个模型,给一个输入,通过模型的运算,得到一个输出。可以用于解决一个简单问题,例如识别图片是不是狗,也可以用来解决复杂问题,例如下棋、开车、医疗诊断、交通治理等等,也可以理解为,模型就是一个函数 f(x),上述过程,可以表达为:f(一张图片)= 狗 / 不是狗。

一个 AI 应用开发,大概分为三个阶段:

通过上述 AI 开发过程的简述,可以发现,算法、数据和算力,是驱动 AI 发展的三大动力,三者缺一不可。

训练 AI 应用模型

动手实践前

接下来,我们通过对一个 AI 应用模型的训练和推理过程介绍,开始动手实践。训练模型需要算力,对于算力的获取,训练和推理可以根据自己的业务需求,选择使用公有云或自己购买带算力芯片的服务器,本文案我选择的是某花厂的 AI 开发平台,因为近期他们刚推出一个免费算力的推广活动,可以省下一笔训练费用。为了便于调试,我首先在自己的 CPU 个人电脑上编写代码、训练模型,这样做的缺点是模型收敛的时间长了一些。

疫情期间,对于民众来说,佩戴口罩是最有效防止被传染新冠病毒的方式,保护自己的同时也保护他人。所以本文的案例是佩戴口罩的识别模型训练。识别算法离不开目标检测。目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小。由于各类物体有不同的形状、大小和数量,加上物体间还会相互遮挡, 因此目标检测一直都是机器视觉领域中最具挑战性的难题之一。

基于深度学习的人脸检测算法,多数都是基于深度学习目标检测算法进行的改进,或者说是把通用的目标检测模型,为适应人脸检测任务而进行的特定配置。而众多的目标检测模型(Faster RCNN、SSD、YOLO)中,人脸检测算法最常用的是 SSD 算法(Single Shot MultiBox Detector,“Single Shot”指的是单目标检测,“MultiBox”中的“Box”就像是我们平时拍摄时用到的取景框,只关注框内的画面,屏蔽框外的内容。创建“Multi”个 "Box",将每个 "Box" 的单目标检测结果汇总起来就是多目标检测。

换句话说,SSD 将图像切分为 N 片,并对每片进行独立的单目标检测,最后汇总每片的检测结果。),其他如 SSH 模型、S3FD 模型、RetinaFace 算法,都是受 SSD 算法的启发,或者基于 SSD 进行的任务定制化改进, 例如将定位层提到更靠前的位置,Anchor 大小调整、Anchor 标签分配规则的调整,在 SSD 基础上加入 FPN 等。本文训练口罩识别模型采用了 YOLO。

目标检测过程都可以分解为两个独立的操作:

我选择采用 keras-yolo3-Mobilenet 方案,开源项目地址:https://github.com/Adamdad/keras-YOLOv3-mobilenet。MobileNet 的创新亮点是 Depthwise Separable Convolution(深度可分离卷积),与 VGG16 相比,在很小的精度损失情况下,将运算量减小了 30 倍。YOLOv3 的创新亮点是 DarkNet-53、Prediction Across Scales、多标签多分类的逻辑回归层。

基于开源数据集的实验结果:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(1)

动手训练模型

训练模型自然需要训练数据集和测试数据集,大家可以在这里下载:

https://modelarts-labs-bj4.obs.cn-north-4.myhuaweicloud.com/casezoo/maskdetect/datasets/maskdetectdatasets.zip

Yolo v3-MobileNet 目标检测工程的目录结构如下:

|--model_data |--voc_classes.txt |--yolo_anchors.txt |--yolo3 |--model.py |--model_Mobilenet.py |--utiles.py |--convert.py |--kmeans.py |--train.py |--train_Mobilenet.py |--train_bottleneck.py |--voc_annotation.py |--yolo.py |--yolo_Mobilenet.py |--yolo_video.py

开源项目的好处是已经帮你封装了流程,例如涉及的 Yolo 代码不用修改,本次训练过程需要修改的代码主要是以下三个:

1.train_Mobilenet.py:模型训练代码;2.yolo/model_Mobilenet.py:基于 mobilenet 的 yolo 的模型代码,如果相对模型代码仔细研究的人,可以研究这个代码;3.yolo_Mobilenet.py:模型推理代码。接下来具体介绍我们需要修改的代码,按照功能分为数据类、模型类、可视化类、迁移上云准备类。

•数据类:

仿照 modeldata/vocclasses.txt 写一个是否有戴口罩的类别的 txt,内容只有 yes_mask、no_mask 两个字符。

如果你下载我给出的数据集,你会发现,口罩数据集中给出的 xml 标注格式是 VOC 的标准的,仿照 convert.py 和 voc_annotation.py 写一个数据转换文件,代码如下所示:

import xml.etree.ElementTree as ET import os def convert_annotation(classes, label_path): in_file = open(label_path) tree=ET.parse(in_file) root = tree.getroot() output_list = [] for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text)) output_list.append(" " ",".join([str(a) for a in b]) ',' str(cls_id)) return (' '.join(output_list)) def mask_convert(data_path, classes): img_list = [] for i in list(os.listdir(data_path)): if i.split('.')[1] == 'jpg': img_list.append(i.split('.')[0]) output_list = [] for image_id in img_list: img_path = (data_path '/%s.jpg' % (image_id)) label_path = (data_path '/%s.xml' % (image_id)) annotation = convert_annotation(classes, label_path) output_list.append(img_path annotation) return output_list

•模型类:

训练过程中会有一个 tensor 对不上的错误,需要修改 model_data/model.py 这个代码中的 140-141 行,如下所示:

box_xy = (K.sigmoid(feats[..., :2]) grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats))

•可视化类:

为了直观判断模型效果,增加了一个在图片上直接标注的可视化代码,也就是在图片上打印输出结果(yes_mask 或 no_mask),代码如下所示:

#!/usr/bin/env python # coding: utf- img_path = "D:/Code/mask_detection/data/test" save_path = "D:/Code/mask_detection/data/test_result/" import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.image as mpimg import random import json # 推理输出路径 with open('D:/Code/mask_detection/keras-YOLOv3-mobilenet-master/annotation_YOLOv3.json') as json_file: data = json.load(json_file) imgs = list(data.keys()) def parse_json(json): bbox = [] for item in json['annotations']: name = item['label'] xmin = item['x'] ymin = item['y'] xmax = item['x'] item['width'] ymax = item['y'] item['height'] bbox_i = [name, xmin, ymin, xmax, ymax] bbox.append(bbox_i) return bbox def visualize_bbox(image, bbox, name): fig, ax = plt.subplots() plt.imshow(image) colors = dict()#指定标注某个对象的边框的颜色 for bbox_i in bbox: cls_name = bbox_i[0] #得到 object 的 name if cls_name not in colors: colors[cls_name] = (random.random(), random.random(), random.random()) #随机生成标注 name 为 cls_name 的 object 的边框颜色 xmin = bbox_i[1] ymin = bbox_i[2] xmax = bbox_i[3] ymax = bbox_i[4] #指明对应位置和大小的边框 rect = patches.Rectangle(xy=(xmin, ymin), width=xmax-xmin, height=ymax-ymin, edgecolor=colors[cls_name],facecolor='None',linewidth=3.5) plt.text(xmin, ymin-2, '{:s}'.format(cls_name), bbox=dict(facecolor=colors[cls_name], alpha=0.5)) ax.add_patch(rect) plt.axis('off') plt.savefig(save_path '{}_gt.png'.format(name)) #将该图片保存下来 plt.close() for item in imgs: img = mpimg.imread(img_path item) bbox = parse_json(data[item]) visualize_bbox(img, bbox, item.split('.')[0])

•上云准备类:

开源代码写的比较随意,直接就是在训练代码 trian_Mobilenet.py 代码中一开头指定所有的参数。华为云中训练作业是需要指定 OBS 的输入路径和输出路径的,最好使用 argparse 的形式将路径参数传进去。其他参数可以按照自己需求做增加,修改样例如下:

import argparse parser = argparse.ArgumentParser(description="training a maskmodel in modelarts") # 训练输出路径 parser.add_argument("--train_url", default='logs/maskMobilenet/003_Mobilenet_finetune/', type=str) # 数据输入路径 parser.add_argument("--data_url", default="D:/code/mask_detection/data/MASK_MERGE/", type=str) # GPU 数量 parser.add_argument("--num_gpus", default=0, type=int) args = parser.parse_args()

开源代码中,数据处理的部分是将 xml 转换成 yolo 读的 txt 文档,这样导致数据输入需要有一个写入到 txt 文件,然后训练工程读取这个 txt 文件和图片的过程。上云后,这种流程不太方便,需要将数据处理,数据转换和训练代码打通。这里我使用缓存将数据直接传到训练代码中,这样改起来比较方便,但是当数据量较大的时候并不科学,有兴趣的人可以自己修改。

迁移公有云

我使用某厂商公有云的 AI 训练平台,用的是 OBS 桶上传已经调试好的代码(建议大家体验 Notebook 方式,在线编程、编译),如下图所示:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(2)

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(3)

接着启动 Notebook,不过我没有用 jupyter 方式写代码,而是采用同步 OBS 桶的资源,通过 Notebook 启动一个 GPU 镜像:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(4)

创建一个 Notebook 环境:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(5)

确认计算资源规格:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(6)

创建 Notebook 环境成功:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(7)

从 OBS 桶同步相关文件:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(8)

接下来进入该 Notebook 的终端环境,运行以下代码,启动训练任务:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(9)

训练过程输出片段如下所示:

2020-04-07 18:58:14.497319: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally 7/7 [==============================] - 17s 2s/step - loss: 4226.4421 - val_loss: 22123.3750 Epoch 2/50 7/7 [==============================] - 6s 855ms/step - loss: 1083.1558 - val_loss: 1734.1427 Epoch 3/50 7/7 [==============================] - 6s 864ms/step - loss: 521.8567 - val_loss: 455.0971 Epoch 4/50 7/7 [==============================] - 6s 851ms/step - loss: 322.8907 - val_loss: 193.3107 Epoch 5/50 7/7 [==============================] - 6s 841ms/step - loss: 227.7257 - val_loss: 150.8902 Epoch 6/50 7/7 [==============================] - 6s 851ms/step - loss: 179.0605 - val_loss: 154.9351 Epoch 7/50 7/7 [==============================] - 6s 868ms/step - loss: 150.4297 - val_loss: 147.3101 Epoch 8/50 7/7 [==============================] - 8s 1s/step - loss: 129.5681 - val_loss: 144.8283

模型生成后,创建一个 python 脚本,代码如下,实现了模型文件拷贝到 OBS 桶:

from modelarts.session import Session session = Session() session.upload_data(bucket_path="/mask-detection-modelarts-test/run/log/", path="/home/ma-user/work/log/trained_weights_final.h5")

运行推理脚本,我把推测结果打印在了测试图片上,如下图所示,识别出了口罩:

大模型将成为ai开发新范式(软件开发转型AI领域工程师)(10)

后记

AI 技术的兴起,已经带动了科技行业的革命,而每一次业界的革命,都会让一些公司落寞而让另一些公司崛起,程序员也一样,每一次技术换代也都会让一些程序员没落而让另一些程序员崛起。抓住目前正在流行的 AI 技术趋势,使用云端的免费计算资源,上手学习并实践 AI 技术,会是相当一部分软件工程师、数据科学家的选择。此外,由于在图像识别、文本识别、语音识别等技术领域,算法的精度已经给有大幅度的提升,在很多场景下已经达到可商用级别,也进一步让自动机器学习技术(模型的自动设计和训练)的发展成为可能。因此,在上述几个技术领域的很多应用场景下,公有云已经可以做到根据用户自定义数据进行 AI 模型的自动训练。

,