出品:科普中国

制作:张昊(大阪大学)

监制:中国科学院计算机网络信息中心

在上一篇文章(地球上那么多元素都怎么来的?你的金饰其实来自星星)中,我们为大家介绍了铀为止的各种元素在宇宙中渐次合成的机理。在这篇文章中,我们将继续沿着周期表中元素序号增加的方向,着眼于超重元素的人工合成这一话题。

高等元素论冻元素(我们为什么要合成超重元素)(1)

图片来源:视觉中国

什么是超重元素,自然界中为什么不存在超重元素?

原子核位于原子中心,占据整个原子绝大多数质量,由带正电荷的质子和电中性的中子构成。质子和中子统称为核子,二者通过核力彼此结合为整体。原子序数与质子数等同,质子数和中子数的和称为质量数。具有相同质子数而中子数不同的原子核称为同位体。一般而言,原子序数越大,质量数也就越大,原子核也就越重。因此,在本文中,我们用重原子核这一说法来表示原子序数非常大的原子核。其中,原子序数104以上的原子核,称为超重核。

截止1925年,人类已经在自然界中发现并分离出了92号元素铀及之前的全部元素,93号元素开始(即所谓的超铀元素),都是通过人工合成方式发现和确认的。我们已经在上一篇文章中提到了地球上铁之后的重元素几乎全部来自于太阳系诞生时期的超新星爆发或中子星合并。

那么,是否可以下结论说上述两种来源最多可以制成92号元素呢?答案是否定的,理论上来说,超新星爆发和中子星合并时候所产生的巨大能量足以合成更重的元素。例如,93、94号元素最初由人工方式合成,但之后在铀矿中发现了它们的痕量存在,这说明自然来源的重原子核并非只能到92号元素铀为止

那为什么自然界中几乎不存在超铀元素呢?问题的关键在于,通常来说元素越重原子核的不稳定性越强,超重原子核存在极大的衰变倾向,制成后在极短的时间内就会转变为其它更轻的原子核,直到能够稳定存在为止。因此,即便超重原子核曾经被其它星体制造出来,它们也无法存留至今。

实际上,人类已知的有稳定同位素存在的最重原子核是82号元素铅,之后的各种重原子核都具有或多或少的衰变倾向。具体而言,重原子核的衰变方式有两种,其一是α衰变,也就是通过释放α粒子(即He-4,氦核)变成原子序数减2的更轻原子核,这一过程会反复进行直到该核可以稳定存在为止。另外一种方式称为自发核分裂,通常发生在原子序数在100号左右的超重核上,此时超重核将会自发分裂为两个原子序数相近的较轻原子核。

超重元素发生衰变的本质是什么?

1.什么是作用于核子间的核力?

那么,为什么重原子核,特别是超重原子核具有极大的衰变倾向呢?这个问题还要从构成原子核的核子们之间存在的复杂相互作用说起。我们已经提到过质子和中子之间存在相互吸引的作用力—核力。解释核力的成因涉及到粒子物理中的短程强相互作用,我们就不展开说明了,读者们只需要将核力理解为核子之间的短距离相互吸引力即可。

在原子核中心附近,核子被周围存在的其它核子所包围,核力在此处将发挥最大限度的效用。与之相对,位于原子核表面附近的核子由于外侧不存在其它核子,因此核子间的相互引力在原子核表面将变弱。对于原子序数较小且核子数目较少的轻原子核而言,其暴露于原子核表面附近的核子相对于全体核子数的比例较高,因此核子间的相互结合力较小。重原子核的情形与之相反,核子间的结合力相对较大。

2.库仑力是什么?

按照上述分析,原子核越重,核子间的核力将发挥更大的结合作用,重原子核似乎应该更加稳定才对。但是,这种想法忽略了存在于质子间的静电斥力,即库仑力。

库仑力是一种在整个原子核范围内都存在的长程作用,质子间由于都携带正电荷,因此将相互排斥。而原子核越重,所含有的质子也就越多,相互间的静电斥力就越强,也就越容易导致原子核的解体衰变。最终,平均到每一个核子上的结合能按照元素轻重顺序存在一个先增大后减小的过程,并在26号元素铁附近达到最大值。可以说,铁原子核是自然界中最为稳定的原子核。我们在上一篇文章中提到的中子星存在铁核心,以及地球内核主要由铁构成等事实皆与铁核的稳定性存在关联。

高等元素论冻元素(我们为什么要合成超重元素)(2)

元素的平均结合能变化趋势及核力与静电力的作用范围示意图

细微之处见真章——原子核内的核子排布大有玄机

1.影响原子核稳定的因素

如果我们再仔细的考察一下上篇文章中展示过的太阳系的元素含量分布图,可以发现随着元素序号的增加,在整体含量的下降趋势之下,还存在若干小型峰位,例如8号元素氧,28号元素铁以及82号元素铅等。

高等元素论冻元素(我们为什么要合成超重元素)(3)

太阳系元素丰度示意图

这些峰位的存在,暗示我们除了原子序数,还存在着其它可以影响原子核稳定性的因素。这一因素就是原子核内的核子排布方式。

与核外电子存在壳层结构类似,原子核内部的质子或中子也存在类似的排布规则。当质子或中子数正好达到填满某壳层时,原子核将处于最为稳定的“闭壳”状态。处于闭壳状态的原子核称为“幻核”,满足闭壳状态的质子数或者中子数称为“幻数”。如果质子数和中子数同时满足幻数,则称这种状态下的原子核为“双幻核”。

2.为什么满壳层的核子排布更稳定?

关于为什么满壳层的核子排布更加稳定,我们可以设想一个也许不太贴切的例子。当我们邮寄书籍一类较重的物品时,经常会想办法让书本尽量填满包装箱的全部空间。这种“尽量填满”的方式可以通过限制书本的相对位移来防止运输过程中书本位置的错动,从而防止包装箱遭到损坏。

满足幻数的质子数有,2、8、20、28、50、82……;满足幻数的中子数有2、8、20、28、50、82、126……。例如,含有82个质子和126个中子的铅-208就是非常稳定的双幻核,因此铅在太阳系中的含量相对其它近邻元素存在峰位就不足为奇了。至于幻数为什么取以上数值,我们就不展开讨论了,有兴趣的读者可以自行参考相关资料。

高等元素论冻元素(我们为什么要合成超重元素)(4)

同位素稳定性图表及原子核的壳层模型示意图

行舟稳定岛——是否存在铅之后的稳定重元素?

目前已知(已经得到验证)的质子幻数最大为82,很多读者或者已经想问,在此之后是否还存在更重的质子幻数?其实,物理学界对这一问题的兴趣已经维持了将近一个世纪。而且,如果真有更大的幻数存在,是否有可能形成铅以后的稳定超重原子核呢?

60年代起,针对上述讨论,物理学界提出了超重元素的“稳定岛”假说。如果说稳定存在的元素好比是高耸的陆地,不能稳定存在的元素好比是无边无际的海洋。那么能够稳定存在的超重元素就好像是海洋中露出水面的岛屿一般。为了寻找下一个满足幻数条件的重原子核,无数的研究人员怀揣着自身的执念和国家的尊严不懈努力着。

高等元素论冻元素(我们为什么要合成超重元素)(5)

稳定岛示意图

根据原子核物理的预测,质子数114,中子数184将成为下一个能够稳定存在的双幻数组合。不少实验事实已经给予了科学家们极大的鼓舞。例如,虽然目前其原子核内的中子数离幻数184仍然相去甚远,但已经制造成功的114号元素确实要比附近的超重元素拥有更长的寿命。此外,增加超重核内的中子数目以令其更接近幻数184同样能够增加超重核的寿命。例如,112号元素Cn的两种同位素中,Cn-285比Cn-277的寿命长了足足五万倍。

虽然稳定岛理论仍然停留在假说层面,但它所勾勒出的前景却足够令人心驰神往,诸多站在世界前沿的研究机构为了寻找到这座传说中的岛屿倾注着无数的资金与精力。即便稳定程度无法达到铅-208的水平,但只要其寿命能不像其他同类元素一样转瞬即逝,我们就一定能找到这种超重元素的潜在用途,它将不再是只能在实验室中仅仅存在几毫秒的“镜花水月”。

意义非凡的超重元素合成伟业

合成超重元素的意义绝非仅仅只是为了寻找稳定岛。首先,合成超重元素的过程可以帮助我们进一步了解原子核内部的运行机制,这是物质世界的终极奥秘之一。只有在正确认识规律的基础上,才能尝试对其加以运用。人类科学史上类似的例子不胜枚举,电磁波和光的性质、重力和引力的性质以及基本例子的性质等等,都是在为人所了解和掌握多年后,才有了相应的大规模应用。

高等元素论冻元素(我们为什么要合成超重元素)(6)

双子星合并时引发的引力波示意图

其次,虽然现有的原子核物理学理论已经可以对超重原子核的性质进行预测和推演,但“能够预测”和“实际观测”显然是两个完全不同的层次。在科学史上,与人类预测相违背的科学事实不在少数,预想外的规律在很多时候都成为了引发新科技革命的导火索。即便预测与实际取得了完美的一致,同样有着重大的意义。在目前的超重元素合成历程中,尚未出现颠覆式的科学发现,不过相对论力学、粒子物理和量子论等等现有科学理论却在此过程中得到了反复的确证和加强。

最后,不断挑战新的超重核制备不仅能对人类现有技术水平起到提升和促进的作用,这一过程本身也是对真理的追问和探求,是对人类最本源好奇心的不断满足。在超重元素领域,元素周期律还能否继续发挥作用?原子核能够成立的极限到底在哪里?新的元素是否能够一直被制造出来,元素序号的极限在哪里?稳定岛真的存在吗?……我们目前仍然无法回答的很多问题,将在未来逐渐找到答案。

在下一篇文章中,我们将为大家介绍合成超重元素的具体路径及其中各种常人难以想象的困难。

高等元素论冻元素(我们为什么要合成超重元素)(7)

,