1、根式
2、实数指数幂
3、指数函数的图像与性质
常用结论
考点自测
指数幂的化简与求值
思考指数幂运算应遵循怎样的原则?
解题心得指数幂运算的一般原则:
(1)有括号的先算括号里面的,没有括号的先做指数运算.
(2)先乘除后加减,负指数幂化成正指数幂的倒数.
(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.
(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.
(5)运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.
指数函数的图像及其应用
指数函数的性质及其应用(多考向)
解题心得
1.比较两个指数幂的大小时,尽量化为同底或同指.当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造同一幂函数,然后比较大小;当底数、指数均不同时,可以利用中间值比较.
2.解决简单的指数方程或不等式的问题主要利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.
3.求解指数型函数与函数性质的综合问题,首先要明确指数型函数的构成,涉及值域、奇偶性、单调区间、最值等问题时,都要借助相关性质的知识分析判断.
要点归纳小结
易错点备注
解决与指数函数有关的问题时,若底数不确定,应注意对a>1及0<a<1进行分类讨论
,