方程的有关概念:
1. 方程:含有未知数的等式就叫做方程。
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
例如: 1700 50x=1800, 2(x 1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
等式的性质:等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,
用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c
移项法则:把等式一边的某项变号后移到另一边,叫做移项。
去括号法则:1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。
解方程的一般步骤:1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).
列一元一次方程解应用题的一般步骤:1.列方程解应用题的基本步骤
注意:
(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上。
(2)解方程的步骤不用写出,直接写结果即可。
(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题。
2.设未知数的方法设未知数的方法一般来讲,有以下几种:
(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况。
(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用。
(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去。
(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题。
题型一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a、b,(其中a、b均为整数, 1≤a≤9,0≤b≤9)则这个两位数可以表示为10a b
一个三位数的百位数字为a,十位数字为b,个位数字为c,(其中均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a b c
(2)奇数与偶数的表示方法:偶数可表示为2k,奇数可表示为2k 1(其中k表示整数)(3)三个相邻的整数的表示方法:可设中间一个整数为a,则这三个相邻的整数可表示为a-1,a,a 1例1 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?
例2 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份。
题型二:日历问题
(1)在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.
(2)日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数.
(3)一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.
例3 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,
(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天?
(2)框出的4个数的和可能是26吗?为什么?
例4 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.
题型三:和差倍分问题
和、差、倍问题关键要分清是几倍多几和几倍少几.
(1)当较大量是较小量的几倍多几时,;(2)当较大量是较小量的几倍少几时,.例5 一部拖拉机耕一片地,第一天耕了这片地的;第二天耕了剩下部分的,还剩下42公顷没耕完,则这片地共有多少公顷?
例6 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?
题型四:行程问题1.行程问题路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间2.流水行船问题顺流速度=静水速度 水流速度逆流速度=静水速度-水流速度水流速度=×(顺流速度-逆流速度)3.火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:
车速×过桥时间=车长 桥长.例7 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.
例8 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?
例9 一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,一天,小船从早晨6点由A港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问:
(1)若小船按水流速度由A港漂流到B港需多少小时?
(2)救生圈是何时掉入水中的?
题型五:工程问题:工作总量=工作时间×工作效率各部分工作量之和=1例10 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?
例11 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?
题型六:商品销售问题:在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:
利润=售价-进价利润=进价×利润率实际售价=标价×打折率例12 某商场经销一种商品,由于进货时价格比原进价降低了,使得利润增加了8个百分点,求经销这种商品原来的利润率。
例13 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?
题型七:方案决策问题:在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案。
例14 某开发商进行商铺促销,广告上写着如下条款:
投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:
方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.
方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.
(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:)
(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?
例15 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.
(1)若绕道而行,要15分钟到达学校。从节省时间考虑,王老师应选择绕道去学校还是选择通过拥挤的道口去学校?
(2)若在王老师等人的维持下,几分钟后秩序恢复正常(每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?
题型八:配套问题:“配套”型应用题中有三组数据:
(1)车间工人的人数;
(2)每人每天平均能生产的不同的零件数;
(3)不同零件的配套比.
(利用(1)(3)得到等量关系,构造方程)
一般地说,(2)、(3)两个数据可以预先给定.例如,在给出(2)、(3)两组数据的基础上,如何确定车间工人人数,使问题有整数解.
例16 某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12个或螺母18个,一个螺栓要配两个螺母.第一天安排14名工人生产螺栓,14名工人生产螺母,问第二天应分配多少人生产螺栓、多少人生产螺母,才能使两天总的生产效率最高?
例17 某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?
题型九:积分问题比赛场数=胜的场数 平的场数 负的场数,比赛分数=胜场得分 平场得分-负场扣分。例18 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了一场,得17分.
(1)前8场比赛中,这支球队共胜了多少场?
(2)这支球队打满14场比赛,最高能得多少分?
(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标.
,