《集合与函数》子交并补集,还有幂指对函数性质奇偶与增减,观察图象最明显复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓指数与对数函数,两者互为反函数底数非1的正数,1两边增减变故函数定义域好求分母不能等于0,偶次方根须非负,零和负数无对数正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集,下面我们就来说一说关于高中数学知识点总结?我们一起去了解并探讨一下这个问题吧!

高中数学知识点总结(高中数学选择题答题技巧)

高中数学知识点总结

《集合与函数》。

子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

《三角函数》。

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值。

《不等式》。

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

《数列》。

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。

《复数》。

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

选择题。

排除:排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项,如果不能立即获得正确的选项,但是你们还是要对自己的需求都是要对这些有应的标准,提高解决问题的精度,注意去除这种方式还是一种解答这种大麻烦的好方式,也是解决选择问题的常用方法。

特殊值法:也就是说,根据标题中的条件,择选出来这种独特的方式还有知道他们,耳膜的内容关键都是要进行测量,在你使用这种方式答题的时候,你还是要看看这些方式都是有很多的要求会符合,你可以好好计算。

通过推测和测量,可以得到直接观测或结果:近年来,人们经常用这种方法来探索高考题中问题的规律性.这类问题的主要解决方法是采用不完整的归类方式,通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决。