可导函数定义:在微积分学中,实变函数在定义域的每一点上都是导数直观地说,函数图像在其定义域中的每个点都相对平滑,并且不包含任何尖点或断点,下面我们就来说一说关于什么是可导?我们一起去了解并探讨一下这个问题吧!

什么是可导(什么是可导函数不可导函数)

什么是可导

可导函数。定义:在微积分学中,实变函数在定义域的每一点上都是导数。直观地说,函数图像在其定义域中的每个点都相对平滑,并且不包含任何尖点或断点。

条件:如果f是在x0处可导的函数,则f一定在x0处连续,特别是,任何可微函数在其定义域的每一点上都必须是连续的。相反,这不一定。事实上,在它的领域中到处都存在一个连续函数,但它在任何地方都是不可微的。

不可导函数。定义:一类处处连续而处处不可导的实值函数。

条件:连续函数的不可导点至多是可列集。