作者
digoal
日期
2016-11-17
标签
PostgreSQL , 秒杀 , 裸秒 , ad lock
双十一背后的技术系列文章
《聊一聊双十一背后的技术 - 物流, 动态路径规划》
《聊一聊双十一背后的技术 - 分词和搜索》
《聊一聊双十一背后的技术 - 不一样的秒杀技术, 裸秒》
背景
秒杀在商品交易中是一个永恒的话题,从双十一,到一票难求,比的仅仅是手快吗?
其实对于交易平台来说,面对的不仅仅是人肉,还有很多脚本,外挂自动化的抢购系统,压力可想而知。
秒杀的优化手段很多,就拿数据库来说,有用排队机制的,有用异步消息的,有用交易合并的。
今天,我要给大家介绍一种更极端的秒杀应对方法,裸秒。
Name Return Type Description
通常数据库支持的最小粒度的锁(指开放给用户的)是行锁,行锁相比LWLOCK,SPINLOCK等是非常重的,所以传统的行锁在秒杀中会成为非常大的瓶颈,包括锁的等待。
ad lock的用途
ad lock的用途,除了我接下来要说的秒杀,其实还有很多用途,例如
并发的安全性检查,
递归调用中用于UPSERT的场景,
业务逻辑设计中用来确保原子操作等。
ad lock的性能指标
因为AD LOCK很轻量化,不需要访问数据,不需要执行冗长的代码,所以很高效。
32核64线程机器测试可以达到131万次/s的锁请求。
vi test.sql
\set id random(1,100000000)
select pg_try_advisory_xact_lock(:id);
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 96 -j 96 -T 100transaction type: ./test.sql
scaling factor: 1query mode: preparednumber of clients: 96number of threads: 96duration: 100 snumber of transactions actually processed: 131516823latency average = 0.072 ms
latency stddev = 0.070 ms
tps = 1314529.211060 (including connections establishing)
tps = 1315395.309707 (excluding connections establishing)script statistics:
- statement latencies in milliseconds: 0.001 \set id random(1,100000000) 0.074 select pg_try_advisory_xact_lock(:id);
ad lock用于秒杀的例子
在数据库中,商品通常有唯一ID,我们可以对这个ID加锁,(当然,如果对不同的表这个ID有重叠的可能,我们可以加偏移量或者其他的手段来达到无冲突)。
加锁成功才会去对行加锁,执行更新,这样就能规避掉无效的行锁等待,以及冗长的查询代码。
使用 AD LOCK 对单条记录的并发更新处理QPS可以达到39.1万/s,被秒杀的商品很快就会变成售罄状态,不会再浪费数据库的资源。
create table test(id int primary key, crt_time timestamp);insert into test values (1);vi test.sql
update test set crt_time=now() where id=1 and pg_try_advisory_xact_lock(1);
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 100transaction type: ./test.sql
scaling factor: 1query mode: preparednumber of clients: 64number of threads: 64duration: 100 snumber of transactions actually processed: 39104368latency average = 0.163 ms
latency stddev = 0.216 ms
tps = 391012.743072 (including connections establishing)
tps = 391175.983419 (excluding connections establishing)script statistics:
- statement latencies in milliseconds: 0.163 update test set crt_time=now() where id=1 and pg_try_advisory_xact_lock(1);
此时数据库主机还有66.2%的空闲CPU资源可用使用。
top - 13:12:43 up 51 days, 18:41, 2 users, load average: 1.12, 0.97, 0.78Tasks: 1463 total, 28 running, 1435 sleeping, 0 stopped, 0 zombieCpu(s): 24.5%us, 9.3%sy, 0.0%ni, 66.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%stMem: 529321832k total, 235226420k used, 294095412k free, 903076k buffersSwap: 0k total, 0k used, 0k free, 62067636k cached
对比传统的例子
传统的消除等待的做法是这样的,通过select for update nowait。
begin;select 1 from tbl where id=pk for update nowait; -- 如果用户无法即刻获得锁,则返回错误。从而这个事务回滚。update tbl set xxx=xxx,upd_cnt=upd_cnt 1 where id=pk and upd_cnt 1<=5;end;
在PG中,可以使用do语句,把以上合成到一个块里面操作。
使用传统的方法,每秒可以处理8.6万。
vi test.sqldo language plpgsql $$ declare begin with t as (select * from test where id=1 for update nowait) update test set crt_time=now() from t where t.id=test.id; exception when others then return; end; $$;
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 100
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 64
number of threads: 64
duration: 100 s
number of transactions actually processed: 8591222
latency average = 0.744 ms
latency stddev = 0.713 ms
tps = 85888.823884 (including connections establishing)
tps = 85924.666940 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.744 do language plpgsql $$ declare begin with t as (select * from test where id=1 for update nowait) update test set crt_time=now() from t where t.id=test.id; exception when others then return; end; $$;
CPU剩余54.5%
top - 13:13:48 up 51 days, 18:42, 2 users, load average: 8.14, 2.69, 1.37Tasks: 1464 total, 21 running, 1442 sleeping, 0 stopped, 1 zombieCpu(s): 41.7%us, 3.8%sy, 0.0%ni, 54.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%stMem: 529321832k total, 235256052k used, 294065780k free, 903176k buffersSwap: 0k total, 0k used, 0k free, 62068308k cached
ad lock相比其他秒杀优化的优势
使用AD LOCK可以使得CPU开销最小化,等待最小化,从本文的测试CASE来看,单条记录的更新可以达到39.1万/s。
传统的手段只能达到8.6万/s。
使用AD LOCK不破坏ACID,单个请求单个事务,不影响其他的事务。
合并优化,本质上是破坏了ACID的,如果合并失败,会导致所有相关的请求失败。
如果你对PG感兴趣,可以再了解一下
沟通和互动以及更多干货,欢迎关注新浪微博:@阿里云云栖社区
,