电子顺磁共振(Electron Paramagnetic Resonance,简称EPR),亦称“电子自旋共振” (ESR),是由不配对电子的磁矩发源的一种磁共振技术,是研究化合物或矿物中不成对电子状态的重要工具。可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。
01 EPR原理
在垂直于B0的方向上施加频率为hv的电磁波,当满足hv=gβB0时,处于两能级间的电子发生受激发跃迁,导致部分处于低能级中的电子吸收电磁波的能量跃迁到高能级中,这就是顺磁共振现象。受激跃迁产生的吸收信号经电子学系统处理可得到EPR吸谱线。
g为波谱分裂因子,简称g因子或g值;β为电子磁矩的自然单位,称玻尔磁子。g因子和A值是EPR谱图中两个最重要的信息,通过测试g因子和A值可以判断出单电子的类型,可能的结构信息,然后通过计算及模拟得出准确结构。
02 EPR研究对象
1.自由基:分子中含有一个未成对电子的物质,如二苯苦基肼基(DPPH),三苯甲基,都有一个未成对电子。
2.双基(Biradical)或多基(Polyradical):在一个分子中含有两个或两个以上未成对电子的化合物,但它们的未成对电子相距较远,相互作用较弱。
3.三重态分子(tripletmolecule):这种化合物的分子轨道中含有两个未成对电子,且相距很近,彼此之间有很强的相互作用。如氧分子,它们可以是基态或激发态。
4.过渡金属离子和稀土离子:这类分子在原子轨道中出现未成对电子,如常见的过渡金属离子有Ti3 (3d1), V3 (3d7)等。
5.固体中的晶格缺陷,一个或多个电子或空穴陷落在缺陷中或其附近,形成了一个具有单电子的物质,如面心、体心等。
6.具有奇数电子的原子,如氢、氮、碱金属原子。
03 EPR应用
1.自由基中间产物的直接检测和分析
用EPR检测自由基是一种快速的、直接有效的方法,实验中将所得EPR波谱中相应吸收峰的g因子计算出来,通过与标准值比较,估算是哪种自由基,再通过化学手段消除自由基以验证上面的推断。
2.瞬态自由基的EPR检测方法及应用
自由基捕捉技术与EPR相结合的方法具有检测灵敏度高、特异选择性强和分析结果可靠等优点,被广泛用于寿命短、稳态浓度低的瞬态自由基的检测,在许多涉及细胞甚至动物体系以及化学反应机制的研究中都得以广泛应用。瞬态自由基的EPR检测的实验方法是:首先设计并合成一种能够捕获自由基的探针分子,这种探针分子必须能够快速捕获反应过程中产生的瞬态自由基,然后用EPR对捕获反应加合物的分子结构进行解析,通过逐一鉴定EPR谱线上各峰对应组分结构,推断并鉴定。
3.顺磁离子配合物的EPR谱研究
顺磁离子配合物的EPR谱研究是将顺磁性金属离子作为结构探针,与蛋白质等有机物结合,形成配位结构,通过研究顺磁离子配合物的EPR图谱能够获取配合物的分子的自旋态、配位结构和电子能级等重要信息。顺磁性离子EPR波谱的解析依赖于配合物的构型与d电子及缺陷的分布,通过对理论计算的方法的研究,能够较为深入地解析多种过渡金属离子及其化合物在不同配位场作用下的EPR信号特征及催化性能研究。
4.固体中的晶格缺陷
一个或多个电子或空穴陷落在缺陷中或其附近,形成了一个具有单电子的物质,如面心、体心等。或因为原子缺少引起的含有单电子的原子缺陷。
5.电子顺磁共振在工农业生产中的应用
电子顺磁共振在实际工农业生产中具有非常多的应用,包括食品与自由基、啤酒酿造过程中的质量控制、辐照剂量计、考古年代的测定、检测烟草自由基、种子和花粉最佳储藏条件的预测等等。
,