考点1.1、实数的概念及分类
1、 实数的分类
有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0).
实数:有理数和无理数统称为实数.
2、无理数
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 8等;
(3)有特定结构的数,如0.1010010001...等;
(4)某些三角函数,如sin60o等
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.
6、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.
☆(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
7、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
即(1)实数(≠0)的倒数是.
(2)和互为倒数。
(3)注意0没有倒数.
8、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
9、科学记数法
把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。
(1)确定:是只有一位整数数位的数.
(2)确定n:当原数≥1时,等于原数的整数位数减1;;当原数<1时,是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。
例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.
(3).近似值的精确度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位
(4)按精确度或有效数字取近似值,一定要与科学计数法有机结合起来.
10、实数大小的比较
知识1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
知识2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
(3)求商比较法:设a、b是两正实数,
(4)绝对值比较法:设a、b是两负实数,则。
(5)平方法:设a、b是两负实数,则。
11、实数的运算 (做题的基础,分值相当大)
1、加法交换律
2、加法结合律
3、乘法交换律
4、乘法结合律
5、乘法对加法的分配律
6、实数的运算顺序
1. 先算乘方开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
2. (同级运算)从"左"到"右"(如5÷×5);(有括号时)由"小"到"中"到"大"。
12、有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
考点1.2、实数与二次根式
1、平方根
如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做""。
2、算术平方根
正数a的正的平方根叫做a的算术平方根,记作""。
正数和零的算术平方根都只有一个,零的算术平方根是零。
(0)
;注意的双重非负性:
-(<0) 0
注意:算术平方根与绝对值
① 都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
3、算术平方根的估算方法:两端逼近法.
例如:估算.(精确到0.1)∵∴.又∵,
又∵6更靠近5.76,∴ 4、立方根
如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:,这说明三次根号内的负号可以移到根号外面。
二次根式
5、二次根式
式子叫做二次根式,二次根式必须满足:含有二次根号"";被开方数a必须是非负数。
6、最简二次根式
若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:
(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
7、同类二次根式
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的性质
(1)
(2)
(3)
(4) 注:
9、根式运算法则:
⑴加法法则(合并同类二次根式);
⑵乘、除法法则;
⑶分母有理化:A.;B.;C..
10.指数
⑴ (-幂,乘方运算)
① a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)
⑵零指数:=1(a≠0)
负整指数:=1/(a≠0,p是正整数)
11、二次根式混合运算
二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
考点1.3、代数式与整式
1、代数式
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。 注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
2、单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。
注意:系数与指数:区别与①从位置上看;②从表示的意义上看
其含义有:
①不含有加、减运算符号.
②字母不出现在分母里.
③单独的一个数或者字母也是单项式.
④不含"符号".多项式 3、多项式
几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,"整体"代入。
4、同类项
所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
5、去括号法则
(1)括号前是" ",把括号和它前面的" "号一起去掉,括号里各项都不变号。
(2)括号前是"﹣",把括号和它前面的"﹣"号一起去掉,括号里各项都变号。
6、整式的运算法则
整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法: 整式的除法:
注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
考点1.4、整式的乘除 同上
考点1.5、因式分解
1、因式分解
把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法
(1)提公因式法:
(2)运用公式法:①
扩展:
② 扩展: 或
同理:或
③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.
公式拓展:⑥
⑦⑧ ⑨
⑩
⑾
(3)分组分解法:
(4)十字相乘法:
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式
(3)分解因式必须分解到每一个因式都不能再分解为止。
考点1.6、分式
1、分式的概念
一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。
2、分式的性质
(1)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
基本性质:=(m≠0)
(2)分式的变号法则:
分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
符号法则:
3、分式的运算法则 技巧:
4、繁分式:①定义:分子或分母中又含有分式的分式,叫做繁分式.②化简方法(两种)通常把繁分式写成分子除以分母的形式,再利用分式的除法法则进行化简.
,