容斥原理极值公式推导,容斥原理解题技巧(1)

考试通研究院陈飞老师

容斥原理

容斥原理是国家公务员行测数量关系中比较重要的一个部分,但很多考生都觉得无从下手,其实,容斥原理关键内容就是两个公式,考生只要把这两个公式灵活掌握就可全面应对此类题型。下面先向大家介绍一下核心公式,另外在练习及真考的过程中,请借助图例将更有助于解题。

核心公式:

(1)两个集合的容斥关系公式:

A+B=A∪B+A∩B

(2)三个集合的容斥关系公式:

A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C

下面在通过例题带大家感受一下两个公式的如何在题目中具体的应用:

【例题1】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A.22 B.18 C.28 D.26

【解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)

显然,A+B=26+24=50;A∪B=32-4=28,

则根据公式A∩B=A+B-A∪B=50-28=22

故本题选择A。

【例题2】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人

A.57 B.73 C.130 D.69

解析:设A=会骑自行车的人(68),B=会游泳的人(62)

显然,A+B=68+62=130;A∪B=85-12=73,

则根据公式A∩B=A+B-A∪B=130-73=57

故本题选择A。

【例题3】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。两个频道都没看过的有多少人?

【解析】设A=看过2频道的人(62),B=看过8频道的人(34)

显然,A+B=62+34=96;A∩B=两个频道都看过的人(11)

则根据公式A∪B=A+B-A∩B=96-11=85

所以,两个频道都没有看过的人数=100-85=15

【例题4】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:

A.22人 B.28人 C.30人 D.36人

【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)

A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)

B∩C=既喜欢看电影又喜欢看戏剧的人(16)

A∩B∩C=三种都喜欢看的人(12)

A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)

根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C

C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)

=148-(100+18+16-12)=26

所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C

=52-16-26+12

=22

故本题选择A。

,