限额规则

积分电路的计算及原理(电路基础第六章)(1)

常数的导数

积分电路的计算及原理(电路基础第六章)(2)

(“c”为常数)

常见衍生工具

积分电路的计算及原理(电路基础第六章)(3)

函数导数e

积分电路的计算及原理(电路基础第六章)(4)

积分电路的计算及原理(电路基础第六章)(5)

三角导数

积分电路的计算及原理(电路基础第六章)(6)

衍生品规则常数规则

积分电路的计算及原理(电路基础第六章)(7)

总和法则

积分电路的计算及原理(电路基础第六章)(8)

差异法则

积分电路的计算及原理(电路基础第六章)(9)

产品规则

积分电路的计算及原理(电路基础第六章)(10)

商法则

积分电路的计算及原理(电路基础第六章)(11)

幂律

积分电路的计算及原理(电路基础第六章)(12)

其他功能的功能

积分电路的计算及原理(电路基础第六章)(13)

反导数(不定积分)

积分电路的计算及原理(电路基础第六章)(14)

注意这里重要的一点:取f(x)的导数可以精确地得到g(x),但是使用g(x)的反导数并不一定给出f(x)的原始形式。例子:

积分电路的计算及原理(电路基础第六章)(15)

注意常数c是未知的!原始函数f(x)可能是3x two5,3倍 two10,3倍 two 任何东西,而f(x)的导数仍然是6x,那么确定函数的反导数要比确定函数的导数要少一些。

常用抗蚀剂

积分电路的计算及原理(电路基础第六章)(16)

积分电路的计算及原理(电路基础第六章)(17)

幂函数的反导数e

积分电路的计算及原理(电路基础第六章)(18)

注:这是e的一个非常独特和有用的性质,和导数一样,这种函数的反导数也是同一个函数。在反除法的情况下,在末尾加上一个常量“c”。

反兴奋剂规则常数规则

积分电路的计算及原理(电路基础第六章)(19)

总和法则

积分电路的计算及原理(电路基础第六章)(20)

差异法则

积分电路的计算及原理(电路基础第六章)(21)

积分与微积分基本定理

积分电路的计算及原理(电路基础第六章)(22)

积分电路的计算及原理(电路基础第六章)(23)

微分方程

与法方程的解是一个数不同,微分方程是一个解实际上是一个函数,并且该未知函数的至少一个导数是方程的一部分。

与寻找函数的反导数一样,我们通常会得到一个包含多种可能性的解决方案(考虑反导数中常见的常数“c”的许多可能值)。回答任何微分方程的函数集称为该微分方程的“通解”。这个集合中的任何一个函数都被称为该微分方程的“特定解”。微分方程中微分和积分的参考变量称为“自变量”

,