- # coding: utf-8
- import os
- import sys
- import subprocess
- import shutil
- import time
- import math
- from PIL import Image, ImageDraw
- import random
- import json
- import re
- # === 思路 ===
- # 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
- # 根据两个点的距离乘以一个时间系数获得长按的时间
- # 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,
- # 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,
- # 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标
- # 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,
- # 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,
- # 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,
- # 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标
- # 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)
- # TODO: 解决定位偏移的问题
- # TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正
- # TODO: 一些固定值根据截图的具体大小计算
- # TODO: 直接用 X 轴距离简化逻辑
- def open_accordant_config():
- screen_size = _get_screen_size()
- config_file = "{path}/config/{screen_size}/config.json".format(
- path=sys.path[0],
- screen_size=screen_size
- )
- if os.path.exists(config_file):
- with open(config_file, 'r') as f:
- print("Load config file from {}".format(config_file))
- return json.load(f)
- else:
- with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:
- print("Load default config")
- return json.load(f)
- def _get_screen_size():
- size_str = os.popen('adb shell wm size').read()
- m = re.search('(\d )x(\d )', size_str)
- if m:
- width = m.group(1)
- height = m.group(2)
- return "{height}x{width}".format(height=height, width=width)
- config = open_accordant_config()
- # Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置
- under_game_score_y = config['under_game_score_y']
- press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节
- piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节
- piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
- # 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标
- if config.get('swipe'):
- swipe = config['swipe']
- else:
- swipe = {}
- swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410
- screenshot_backup_dir = 'screenshot_backups/'
- if not os.path.isdir(screenshot_backup_dir):
- os.mkdir(screenshot_backup_dir)
- def pull_screenshot():
- process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
- screenshot = process.stdout.read()
- if sys.platform == 'win32':
- screenshot = screenshot.replace(b'\r\n', b'\n')
- f = open('autojump.png', 'wb')
- f.write(screenshot)
- f.close()
- def backup_screenshot(ts):
- # 为了方便失败的时候 debug
- if not os.path.isdir(screenshot_backup_dir):
- os.mkdir(screenshot_backup_dir)
- shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))
- def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
- draw = ImageDraw.Draw(im)
- # 对debug图片加上详细的注释
- draw.line((piece_x, piece_y) (board_x, board_y), fill=2, width=3)
- draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
- draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
- draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
- draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
- draw.ellipse((piece_x - 10, piece_y - 10, piece_x 10, piece_y 10), fill=(255, 0, 0))
- draw.ellipse((board_x - 10, board_y - 10, board_x 10, board_y 10), fill=(0, 0, 255))
- del draw
- im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))
- def set_button_position(im):
- # 将swipe设置为 `再来一局` 按钮的位置
- global swipe_x1, swipe_y1, swipe_x2, swipe_y2
- w, h = im.size
- left = w / 2
- top = 1003 * (h / 1280.0) 10
- swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
- def jump(distance):
- press_time = distance * press_coefficient
- press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间
- press_time = int(press_time)
- cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
- x1=swipe['x1'],
- y1=swipe['y1'],
- x2=swipe['x2'],
- y2=swipe['y2'],
- duration=press_time
- )
- print(cmd)
- os.system(cmd)
- # 转换色彩模式hsv2rgb
- def hsv2rgb(h, s, v):
- h = float(h)
- s = float(s)
- v = float(v)
- h60 = h / 60.0
- h60f = math.floor(h60)
- hi = int(h60f) % 6
- f = h60 - h60f
- p = v * (1 - s)
- q = v * (1 - f * s)
- t = v * (1 - (1 - f) * s)
- r, g, b = 0, 0, 0
- if hi == 0: r, g, b = v, t, p
- elif hi == 1: r, g, b = q, v, p
- elif hi == 2: r, g, b = p, v, t
- elif hi == 3: r, g, b = p, q, v
- elif hi == 4: r, g, b = t, p, v
- elif hi == 5: r, g, b = v, p, q
- r, g, b = int(r * 255), int(g * 255), int(b * 255)
- return r, g, b
- # 转换色彩模式rgb2hsv
- def rgb2hsv(r, g, b):
- r, g, b = r/255.0, g/255.0, b/255.0
- mx = max(r, g, b)
- mn = min(r, g, b)
- df = mx-mn
- if mx == mn:
- h = 0
- elif mx == r:
- h = (60 * ((g-b)/df) 360) % 360
- elif mx == g:
- h = (60 * ((b-r)/df) 120) % 360
- elif mx == b:
- h = (60 * ((r-g)/df) 240) % 360
- if mx == 0:
- s = 0
- else:
- s = df/mx
- v = mx
- return h, s, v
- def find_piece_and_board(im):
- w, h = im.size
- piece_x_sum = 0
- piece_x_c = 0
- piece_y_max = 0
- board_x = 0
- board_y = 0
- left_value = 0
- left_count = 0
- right_value = 0
- right_count = 0
- from_left_find_board_y = 0
- from_right_find_board_y = 0
- scan_x_border = int(w / 8) # 扫描棋子时的左右边界
- scan_start_y = 0 # 扫描的起始y坐标
- im_pixel=im.load()
- # 以50px步长,尝试探测scan_start_y
- for i in range(int(h / 3), int( h*2 /3 ), 50):
- last_pixel = im_pixel[0,i]
- for j in range(1, w):
- pixel=im_pixel[j,i]
- # 不是纯色的线,则记录scan_start_y的值,准备跳出循环
- if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
- scan_start_y = i - 50
- break
- if scan_start_y:
- break
- print('scan_start_y: ', scan_start_y)
- # 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3
- for i in range(scan_start_y, int(h * 2 / 3)):
- for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销
- pixel = im_pixel[j,i]
- # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
- if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
- piece_x_sum = j
- piece_x_c = 1
- piece_y_max = max(i, piece_y_max)
- if not all((piece_x_sum, piece_x_c)):
- return 0, 0, 0, 0
- piece_x = piece_x_sum / piece_x_c
- piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半
- for i in range(int(h / 3), int(h * 2 / 3)):
- last_pixel = im_pixel[0, i]
- # 计算阴影的RGB值,通过photoshop观察,阴影部分其实就是背景色的明度V 乘以0.7的样子
- h, s, v = rgb2hsv(last_pixel[0], last_pixel[1], last_pixel[2])
- r, g, b = hsv2rgb(h, s, v * 0.7)
- if from_left_find_board_y and from_right_find_board_y:
- break
- if not board_x:
- board_x_sum = 0
- board_x_c = 0
- for j in range(w):
- pixel = im_pixel[j,i]
- # 修掉脑袋比下一个小格子还高的情况的 bug
- if abs(j - piece_x) < piece_body_width:
- continue
- # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
- if abs(pixel[0] - last_pixel[0]) abs(pixel[1] - last_pixel[1]) abs(pixel[2] - last_pixel[2]) > 10:
- board_x_sum = j
- board_x_c = 1
- if board_x_sum:
- board_x = board_x_sum / board_x_c
- else:
- # 继续往下查找,从左到右扫描,找到第一个与背景颜色不同的像素点,记录位置
- # 当有连续3个相同的记录时,表示发现了一条直线
- # 这条直线即为目标board的左边缘
- # 然后当前的 y 值减 3 获得左边缘的第一个像素
- # 就是顶部的左边顶点
- for j in range(w):
- pixel = im_pixel[j, i]
- # 修掉脑袋比下一个小格子还高的情况的 bug
- if abs(j - piece_x) < piece_body_width:
- continue
- if (abs(pixel[0] - last_pixel[0]) abs(pixel[1] - last_pixel[1]) abs(pixel[2] - last_pixel[2])
- > 10) and (abs(pixel[0] - r) abs(pixel[1] - g) abs(pixel[2] - b) > 10):
- if left_value == j:
- left_count = left_count 1
- else:
- left_value = j
- left_count = 1
- if left_count > 3:
- from_left_find_board_y = i - 3
- break
- # 逻辑跟上面类似,但是方向从右向左
- # 当有遮挡时,只会有一边有遮挡
- # 算出来两个必然有一个是对的
- for j in range(w)[::-1]:
- pixel = im_pixel[j, i]
- # 修掉脑袋比下一个小格子还高的情况的 bug
- if abs(j - piece_x) < piece_body_width:
- continue
- if (abs(pixel[0] - last_pixel[0]) abs(pixel[1] - last_pixel[1]) abs(pixel[2] - last_pixel[2])
- > 10) and (abs(pixel[0] - r) abs(pixel[1] - g) abs(pixel[2] - b) > 10):
- if right_value == j:
- right_count = left_count 1
- else:
- right_value = j
- right_count = 1
- if right_count > 3:
- from_right_find_board_y = i - 3
- break
- # 如果顶部像素比较多,说明图案近圆形,相应的求出来的值需要增大,这里暂定增大顶部宽的三分之一
- if board_x_c > 5:
- from_left_find_board_y = from_left_find_board_y board_x_c / 3
- from_right_find_board_y = from_right_find_board_y board_x_c / 3
- # 按实际的角度来算,找到接近下一个 board 中心的坐标 这里的角度应该是30°,值应该是tan 30°,math.sqrt(3) / 3
- board_y = piece_y - abs(board_x - piece_x) * math.sqrt(3) / 3
- # 从左从右取出两个数据进行对比,选出来更接近原来老算法的那个值
- if abs(board_y - from_left_find_board_y) > abs(from_right_find_board_y):
- new_board_y = from_right_find_board_y
- else:
- new_board_y = from_left_find_board_y
- if not all((board_x, board_y)):
- return 0, 0, 0, 0
- return piece_x, piece_y, board_x, new_board_y
- def dump_device_info():
- size_str = os.popen('adb shell wm size').read()
- device_str = os.popen('adb shell getprop ro.product.model').read()
- density_str = os.popen('adb shell wm density').read()
- print("如果你的脚本无法工作,上报issue时请copy如下信息:\n**********\
- \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
- size=size_str.strip(),
- type=device_str.strip(),
- dpi=density_str.strip(),
- os=sys.platform,
- python=sys.version
- ))
- def check_adb():
- flag = os.system('adb devices')
- if flag == 1:
- print('请安装ADB并配置环境变量')
- sys.exit()
- def main():
- h, s, v = rgb2hsv(201, 204, 214)
- print(h, s, v)
- r, g, b = hsv2rgb(h, s, v*0.7)
- print(r, g, b)
- dump_device_info()
- check_adb()
- while True:
- pull_screenshot()
- im = Image.open('./autojump.png')
- # 获取棋子和 board 的位置
- piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
- ts = int(time.time())
- print(ts, piece_x, piece_y, board_x, board_y)
- set_button_position(im)
- jump(math.sqrt((board_x - piece_x) ** 2 (board_y - piece_y) ** 2))
- save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
- backup_screenshot(ts)
- time.sleep(random.uniform(1.2, 1.4)) # 为了保证截图的时候应落稳了,多延迟一会儿
- if __name__ == '__main__':
- main()
,