大家好,我是吴师兄,周末快乐,分享个有趣的编程问题

实在顶不住就别硬撑着了(我实在是憋不住了)(1)

这就是一个求阶乘的问题,大家刚刚开始学编程的时候应该都写过这样的程序。

一个求阶乘的问题,还能玩出什么样的花儿来?

我在回答区看到了一个非常有趣的回答,把各种版本的代码都举例了出来,一个比一个还离谱,后面的代码,甚至让怀疑是我学过的代码吗?

分享给大家图个乐,下面是回答正文,答主:小白白。

数学家版本:

(简单利索,深藏功与名)

#include <iostream> #include <cmath> int main() { std::cout << std::tgamma(20 1) << std::endl; }

语言学家版本:

(语言学家,你懂得,恨不得把所有语法特性都派上用场)

#include <iostream> #include <utility> template<std::size_t...I> constexpr auto foo(std::index_sequence<I...>) { return ((I 1) * ...); } int main() { std::cout << foo(std::make_index_sequence<20>()) << std::endl; }

历史学家版本:

(void main() 有没有嗅到浓厚的历史气息?)

#include <stdio.h> void main(void) { int i; long long j; for(i = 1, j = 1;i <= 20; j *= i ); printf("%lld", j); }

敏捷开发上线1.0版本:

(可以说是非常敏捷了)

#include <stdio.h> int main() { //printf("%d", 1*2*3*4*5*6*7*8*9*10); printf("%lld", (long long)1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20); }

面向对象专家版本:

(好家伙,一个简单的问题,愣是祭出了接口、继承、虚函数、虚继承、智能指针等一大堆东西出来,这很面向对象)

#include <iostream> #include <string> #include <memory> struct IBaseInterface { virtual ~IBaseInterface() = 0; }; inline IBaseInterface::~IBaseInterface() = default; struct IDataProvider : virtual public IBaseInterface { virtual int first() = 0; virtual int last() = 0; virtual int next(int v) = 0; }; struct ICalculator : virtual public IBaseInterface { virtual long long calc(IDataProvider *) = 0; }; struct IPrinter : virtual public IBaseInterface { virtual void print(const std::string &) = 0; }; struct ISerializer : virtual public IBaseInterface { virtual std::string serialize(long long value) = 0; }; struct IRunnable : virtual public IBaseInterface { virtual void run() = 0; }; class Foo : virtual public IRunnable { std::shared_ptr<IDataProvider> m_dp; std::shared_ptr<ICalculator> m_c; std::shared_ptr<ISerializer> m_s; std::shared_ptr<IPrinter> m_p; public: Foo(std::shared_ptr<IDataProvider> dp, std::shared_ptr<ICalculator> c, std::shared_ptr<ISerializer> s, std::shared_ptr<IPrinter> p) : m_dp(std::move(dp)), m_c(std::move(c)), m_s(std::move(s)),m_p(std::move(p)) {} void run() override { return m_p->print(m_s->serialize(m_c->calc(m_dp.get()))); } }; class DefaultSerializer : virtual public ISerializer { public: std::string serialize(long long value) override { return std::to_string(value); } }; class StreamPrinter : virtual public IPrinter { std::ostream &m_os; public: explicit StreamPrinter (std::ostream &os) : m_os(os) {} void print(const std::string &s) override { m_os << s << std::endl; } }; class MultiplyAccumulateCalculator : virtual public ICalculator { public: long long calc(IDataProvider *dp) override { int i = dp->first(); long long j = i; do j *= (i = dp->next(i)); while(i != dp->last()); return j; } }; int main() { struct MyDataProvider : virtual public IDataProvider { int first() override { return 1; } int last() override { return 20; } int next(int v) override { return v 1; } }; Foo foo(std::make_shared<MyDataProvider>(), std::make_shared<MultiplyAccumulateCalculator>(), std::make_shared<DefaultSerializer>(), std::make_shared<StreamPrinter>(std::cout)); foo.run(); }

提前优化的并行版本:

(一看就是精通底层技术的大佬,把CPU拿捏得死死的)

#include <iostream> #include <xmmintrin.h> double foo(int x) { __m128 a = {1.0f, 2.0f, 3.0f, 4.0f}; __m128 b = {4.0f, 4.0f, 4.0f, 4.0f}; __m128 c = {1.0f, 1.0f, 1.0f, 1.0f}; for(int i = 0; i < x / 4; i, a = _mm_add_ps(a, b)) c = _mm_mul_ps(c, a); for(int i = x % 4; i < 4; i) a[i] = 1.0f; c = _mm_mul_ps(c, a); return (double)c[0] * (double)c[1] * (double)c[2] * (double)c[3]; } int main() { std::cout << foo(20) << std::endl; }

黑魔法版本:

(能看懂这段代码的,都不是普通人!)

#include <iostream> #include <numeric> #include <vector> #include <functional> int main() { std::vector<int> v(std::atoi(std::end(__DATE__) - (__LINE__) / 2) - 1); // 2021年,第六行 std::iota(v.begin(), v.end(), 1); std::cout << std::accumulate(v.begin(), v.end(), 1ull, std::multiplies<>()) << std::endl; }

“宏孩儿”元编程版:

(当年看各种C 框架中,排山倒海一样的宏定义,简直令人发指)

#include <boost/preprocessor.hpp> // 由于boost.preprocessor仅提供255以下的整数运算 // 所以使用sequence来 (十位个位)(千位百位)(十万位万位) 的方式来表示大整数。 // 不进位加法:(77)(66)(55) (44)(33)(22) = (121)(99)(77) #define PP_ADD_N_N_CARRY_OP(R, DATA, I, ELEM) (BOOST_PP_ADD(BOOST_PP_SEQ_ELEM(I, DATA), ELEM)) #define PP_ADD_N_N_CARRY(SEQ_A, SEQ_B) BOOST_PP_SEQ_FOR_EACH_I(PP_ADD_N_N_CARRY_OP, SEQ_A, SEQ_B) // 进位加法:(121)(99)(77) = (21)(0)(78) // 注意SEQ_A的长度要比SEQ_B长 #define PP_ADD_N_N_OP(S, STATE, ELEM_CARRY) \ BOOST_PP_SEQ_PUSH_FRONT( \ BOOST_PP_SEQ_REPLACE(STATE, 0, BOOST_PP_MOD(BOOST_PP_ADD(BOOST_PP_SEQ_HEAD(STATE), ELEM_CARRY), 100)), \ BOOST_PP_DIV(BOOST_PP_ADD(BOOST_PP_SEQ_HEAD(STATE), ELEM_CARRY), 100) \ ) #define PP_ADD_N_N(SEQ_A, SEQ_B) BOOST_PP_SEQ_REVERSE(BOOST_PP_SEQ_FOLD_LEFT(PP_ADD_N_N_OP, BOOST_PP_SEQ_NIL(0), PP_ADD_N_N_CARRY(SEQ_A, SEQ_B))) // 没什么好说的,X*N = X X X X X ... X #define PP_MUL_N_1_EXP_OP(Z, I, DATA) (DATA) #define PP_MUL_N_1_EXP(SEQ_N, N) BOOST_PP_REPEAT(N, PP_MUL_N_1_EXP_OP, SEQ_N) #define PP_MUL_N_1_MYOP(S, STATE, ITEM) PP_ADD_N_N(STATE, ITEM) #define PP_MUL_N_1_FWD(EXP) BOOST_PP_SEQ_FOLD_LEFT(PP_MUL_N_1_MYOP, BOOST_PP_SEQ_HEAD(EXP), BOOST_PP_SEQ_TAIL(EXP)) #define PP_MUL_N_1(SEQ_N, N) PP_MUL_N_1_FWD(PP_MUL_N_1_EXP(SEQ_N, N)) #define FACT5 PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1((1), 2), 3), 4), 5) #define FACT10 PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(FACT5, 6), 7), 8), 9), 10) #define FACT15 PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(FACT10, 11), 12), 13), 14), 15) #define FACT20 PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(FACT15, 16), 17), 18), 19), 20) #define FACT25 PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(PP_MUL_N_1(FACT20, 21), 22), 23), 24), 25) static_assert(false, BOOST_PP_STRINGIZE(FACT10));

真·模板元编程版本

(泛型编程,码不惊人死不休)

#include <iostream> #include <iomanip> #include <type_traits> using BaseType_t = long long; constexpr BaseType_t lgBase = 9; // 注意10000*10000刚刚好小于int的取值范围 constexpr BaseType_t Base = 1000000000; // 注意10000*10000刚刚好小于int的取值范围 // 大整数的表示 template<BaseType_t...I> struct Biginteger { using type = BigInteger; }; // 连接 template<class T1, class T2> struct BI_Cat; template<BaseType_t...I1, BaseType_t...I2> struct BI_Cat <BigInteger<I1...>, BigInteger<I2...>> : BigInteger<I1..., I2...> {}; // 左移一个单元(即*Base) template<class T> struct BI_SHL; template<BaseType_t...I> struct BI_SHL<BigInteger<I...>> : BigInteger<I..., 0> {}; // 去除开头的0 template<class T> struct BI_Remove_Zeros : T {}; template<BaseType_t...I> struct BI_Remove_Zeros<BigInteger<0, I...>> : BI_Remove_Zeros<BigInteger<I...>> {}; // 填充0到N个单元 template<int X, class IS> struct BI_Fill_Impl; template<int X, class T, T...I> struct BI_Fill_Impl<X, std::integer_sequence<T, I...>> : BigInteger<(I, X)...> {}; template<int Size> struct BI_Fill_Zeros : BI_Fill_Impl<0, std::make_index_sequence<Size>> {}; template<class T, int N> struct BI_Resize; template<BaseType_t...I, int N> struct BI_Resize<BigInteger<I...>, N> : BI_Cat<typename BI_Fill_Zeros<N - sizeof...(I)>::type, BigInteger<I...>> {}; // 返回较大的数值 template<int A, int B> struct int_min : std::integral_constant<int, (A<B?B:A)> {}; // 非进位加法:先把两个数的位数改成一样的然后依次相加 template<class A, class B, class ShouldResize> struct BI_AddNotCarry_Impl; template<BaseType_t...I1, BaseType_t...I2> struct BI_AddNotCarry_Impl <BigInteger<I1...>, BigInteger<I2...>, std::true_type> : BigInteger<(I1 I2)...> {}; template<BaseType_t...I1, BaseType_t...I2> struct BI_AddNotCarry_Impl <BigInteger<I1...>, BigInteger<I2...>, std::false_type> : BI_AddNotCarry_Impl< typename BI_Resize<BigInteger<I1...>, int_min<sizeof...(I1), sizeof...(I2)>::value>::type, typename BI_Resize<BigInteger<I2...>, int_min<sizeof...(I1), sizeof...(I2)>::value>::type, std::true_type >{}; template<class A, class B> struct BI_AddNotCarry; template<BaseType_t...I1, BaseType_t...I2> struct BI_AddNotCarry <BigInteger<I1...>, BigInteger<I2...>> : BI_AddNotCarry_Impl<BigInteger<I1...>, BigInteger<I2...>, std::bool_constant<sizeof...(I1) == sizeof...(I2)>> {}; // 判断是否为0 template<class Y> struct BI_IsZero; template<BaseType_t...I> struct BI_IsZero<BigInteger<I...>> : std::bool_constant<((I == 0) && ...)> {}; // 自动进位 template<class A> struct BI_Carry; template<class A, class B> struct BI_Add : BI_Carry<typename BI_AddNotCarry<A, B>::type> {}; template<class Mod, class Div, class ShouldCalc = typename BI_IsZero<Div>::type> struct BI_Carry_Impl; template<class Mod, class Div> struct BI_Carry_Impl<Mod, Div, std::true_type> : Mod {}; template<class Mod, class Div> struct BI_Carry_Impl<Mod, Div, std::false_type> : BI_Add<Mod, typename BI_SHL<Div>::type > {}; template<BaseType_t...I> struct BI_Carry<BigInteger<I...>> : BI_Remove_Zeros<typename BI_Carry_Impl<BigInteger<(I % Base)...>, BigInteger<(I / Base)...>>::type> {}; // 乘以X并自动进位 template<class A, int X> struct BI_MulX; template<BaseType_t...I1, int X> struct BI_MulX <BigInteger<I1...>, X> : BI_Carry<BigInteger<(I1 * X)...>> {}; // 计算阶乘 template<int X> struct BI_Fact : BI_MulX<typename BI_Fact<X-1>::type, X> {}; template<> struct BI_Fact<0> : BigInteger<1> {}; template<BaseType_t...I> std::ostream &operator<<(std::ostream &out, BigInteger<I...>) { return ((out << std::setfill('0') << I << std::setw(lgBase)), ...); } int main() { std::cout << typename BI_Fact<20>::type() << std::endl; }

原回答:

https://www.zhihu.com/question/365763395/answer/971009059

不得不服,这位老哥真是人才,把 C 玩出这么多花样,不愧是语言学家。当然,现实工作中不会有人这样写代码的,所以大家图个乐就好,不用较真。

你们在第几个版本倒下了?

我反正看到面向对象专家版本就已经忍不住了

实在顶不住就别硬撑着了(我实在是憋不住了)(2)

···

END

从零开始学算法,无悔做一名程序员!

原文链接:https://mp.weixin.qq.com/s/0qjOX8kxEspjBwjTv-aBpA

,