通常指Pearson product-moment correlation coefficient,统计学参数,用来研究变量间的相关性,通常描述变量间的线性相关性。其范围介于-1和1之间,其绝对值越接近1,说明变量间的相关性越大。

correlation相关性如何计算(相关系数Correlation)(1)

相关系数r的范围

Pearson相关系数的计算公式如下:

correlation相关性如何计算(相关系数Correlation)(2)

Pearson相关系数计算公式

该公式将变量x和y的协方差与变量x和y的方差积的根号值的比值作为新的参数来衡量变量x和y之间相关性。Pearson相关系数的好处在于归一化了系数的范围,不用考虑量纲值对参数评价的影响,但是该系数有一定的局限性,并不能完全描述所有变量的相关性。除此之外描述变量相关性的系数还有Spearman correlation coefficient(斯皮尔曼相关性系数)和Kendall(肯德尔相关性系数)系数。Spearman系数用于描述具有顺序属性的变量序列,而Kendall序列用于描述具有类别属性的变量。

如何计算Pearson等相关系数呢?

明确了这些系数之后,重点在于如何计算这些系数。可以通过一些统计分析软件,去计算这些系数,常用的有Origin和Spss等。此外也可以使用python和Matlab的库函数很容易求得这些变量之间的相关系数。以Origin为例:

correlation相关性如何计算(相关系数Correlation)(3)

我们首先可以导入需要分析的变量值到一个工作簿中,然后进入Origin统计菜单,然后点击相关系数进入相关系数页面

correlation相关性如何计算(相关系数Correlation)(4)

在相关系数页面,我们可以选择要选取变量的范围,指定需要计算那些相关性系数,同时可以将变量绘制成散点图便于可视化分析。

correlation相关性如何计算(相关系数Correlation)(5)

通过计算可得变量A和变量B之间是高度相关的,其相关系数值高达0.99。

correlation相关性如何计算(相关系数Correlation)(6)

Origin计算相关系数

使用Python计算相关性系数

通过使用Python的pandas库我们可以很容易对相应的变量执行相关系数计算,通过计算可以求得变量1和变量2之间的相关系数为0.99461,这和Origin计算得到的结果一致。此外还可以在corr函数内设置相关系数的计算类别,进一步执行Spearman系数和Kendall系数计算。使用Python的好处是可以方便快捷去执行批量化的相关系数计算。

correlation相关性如何计算(相关系数Correlation)(7)

使用python计算相关系数

,