这篇博客就单独讲Code属性表中的exception_table。
在讲之前我们先思考两个问题?
1、为什么捕获异常会较大的性能消耗?
2、为什么finally中的代码会永远执行?
接下来会从JVM虚拟机的角度来解答这两个问题。
一、概念1、JVM是如何捕获异常的?1、编译而成的字节码中,每个方法都附带一个异常表。2、异常表中每一个条目代表一个异常处理器3、触发异常时,JVM会遍历异常表,比较触发异常的字节码的索引值是否在异常处理器的from指针到to指针的范围内。4、范围匹配后,会去比较异常类型和异常处理器中的type是否相同。5、类型匹配后,会跳转到target指针所指向的字节码(catch代码块的开始位置)6、如果没有匹配到异常处理器,会弹出当前方法对应的Java栈帧,并对调用者重复上述操作。
2、什么是异常表?1. 每个方法都附带一个异常表
2. 异常表中每一个条目, 就是一个异常处理器
异常表如下:
3、什么是异常处理器?其组成部分有哪些?
1、异常处理器由from指针、to指针、target指针,以及所捕获的异常类型所构成(type)。
2、这些指针的数值就是字节码的索引(bytecode index, bci),可以直接去定位字节码。
3、from指针和to指针,标识了该异常处理器所监控的返回
4、target指针,指向异常处理器的起始位置。如catch代码块的起始位置
5、type:捕获的异常类型,如Exception
1、会弹出当前方法对应的Java栈帧
2、在调用者上重复异常匹配的流程。
3、最坏情况下,JVM需要编译当前线程Java栈上所有方法的异常表
二、代码演示1、try-catch
public static void main(String[] args) {
try {
mayThrowException();
} catch (Exception e) {
e.printStackTrace();
}
}
// 对应的 Java 字节码
public static void main(java.lang.String[]);
Code:
0: invokestatic mayThrowException:()V
3: goto 11
6: astore_1
7: aload_1
8: invokevirtual java.lang.Exception.printStackTrace
11: return
Exception table:
from to target type
0 3 6 Class java/lang/Exception // 异常表条目
上面Code中的字节码自己也没有仔细研究过,我们可以具体看下面的Exception table表,来进行分析。
1、from和to: 指是try和catch之间的代码的索引位置。from=0,to=3,代表从字节索引0的位置到3(不包括3)。
2、target : 代表catch后代码运行的起始位置。
3、type : 指的是异常类型,这里是指Exception异常。
当程序触发异常时,java虚拟机会从上至下遍历异常表中的所有条目。当触发异常的字节码的索引值在某个异常表条目的监控范围内,Java 虚拟机会判断所抛出的异常
和该条目想要捕获的异常是否匹配。如果匹配,Java 虚拟机会将控制流转移至该条目target 指针指向的字节码。
如果遍历完所有异常表条目,Java 虚拟机仍未匹配到异常处理器,那么它会弹出当前方法对应的Java 栈帧,并且在调用者(caller)中重复上述操作。在最坏情况下,
Java 虚拟机需要遍历当前线程 Java 栈上所有方法的异常表。
2、try-catch-finallyfinally 代码块的编译比较复杂。当前版本 Java 编译器的做法,是复制 finally 代码块的内容,分别放在 try-catch 代码块所有正常执行路径以及异常执行路径的出口中。
代码示例
public static void XiaoXiao() {
try {
dada();
} catch (Exception e) {
e.printStackTrace();
} finally {
System.out.println("Finally");
}
}
//通过javap 反编译
public static void XiaoXiao();
Code:
0: invokestatic #3 // Method dada:()V
3: getstatic #6 // Field java/lang/System.out:Ljava/io/PrintStream;
6: ldc #7 // String Finally
8: invokevirtual #8 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
11: goto 41
14: astore_0
15: aload_0
16: invokevirtual #5 // Method java/lang/Exception.printStackTrace:()V
19: getstatic #6 // Field java/lang/System.out:Ljava/io/PrintStream;
22: ldc #7 // String Finally
24: invokevirtual #8 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
27: goto 41
30: astore_1
31: getstatic #6 // Field java/lang/System.out:Ljava/io/PrintStream;
34: ldc #7 // String Finally
36: invokevirtual #8 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
39: aload_1
40: athrow
41: return
Exception table:
from to target type
0 3 14 Class java/lang/Exception
0 3 30 any
14 19 30 any
和之前有所不同,这次
1、异常表中,有三条数据,而我们仅仅捕获了一个Exception2、异常表的后两个item的type为any
上面的三条异常表item的意思为
1、如果0到3之间,发生了Exception类型的异常,调用14位置的异常处理者。
2、 如果0到3之间,无论发生什么异常,都调用30位置的处理者。
3、 如果14到19之间(即catch部分),不论发生什么异常,都调用30位置的处理者。
`问题`:通过上面那幅图和javap反编译代码就可以很好的解释为什么finally里面的代码永远会执行?
原因:因为当前版本Java编译器的做法,是复制finally代码块的内容,分别放到所有正常执行路径,以及异常执行路径的出口中。
这三份finally代码块都放在什么位置:
第一份位于try代码后 : 如果try中代码正常执行,没有异常那么finally代码就在这里执行。第二份位于catch代码后 : 如果try中有异常同时被catch捕获,那么finally代码就在这里执行。第三份位于异常执行路径 : 如果如果try中有异常但没有被catch捕获,或者catch又抛异常,那么就执行最终的finally代码。问题 :为什么捕获异常会较大的性能消耗?
因为构造异常的实例比较耗性能。这从代码层面很难理解,不过站在JVM的角度来看就简单了,因为JVM在构造异常实例时需要生成该异常的栈轨迹。这个操作会逐一访问当前
线程的栈帧,并且记录下各种调试信息,包括栈帧所指向方法的名字,方法所在的类名、文件名,以及在代码中的第几行触发该异常等信息。虽然具体不清楚JVM的实现细节,但
是看描述这件事情也是比较费时费力的。
,