∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()
A.6 B.7 C.8 D.10
分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2 ED=8.
解:∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,
∴CE=1,∴ED=CE CD=4.又∵BF∥DE,点D是AB的中点,
∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.
点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.
,