0应该是什么样的(0真的代表什么都没有么)(1)

说起0这个数字,大家的第一反应都是它代表什么都没有,但是其实0在数学中有极其重要的地位。本文结合了几个生动的小例子,诠释了0在数学表达中的“占位”思想,并在最后站在程序员的角度,结合0的“占位”思想,给出了一段降低队列锁粒度的代码。

1. 计数

1.1 计数的历史

古埃及人:使用5进制和10进制混合的计数法。5和10为一个单元,用记号标识,比如用一道横线代表1,一道竖线代表10等,但是古埃及人没数位的概念,在表示1万时很容易,比如画一个青蛙,但是表示9999时,非常复杂。古埃及人使用一种草纸来计数。

0应该是什么样的(0真的代表什么都没有么)(2)

古巴比伦人:粘土板上使用棱形记号来表示数。他们使用1和10两种棱形记号表示1~59,并将记号所在的位置来表示数位。现在通用的1小时=60分钟的时间换算就是源于古巴比伦的60进制计数法。

0应该是什么样的(0真的代表什么都没有么)(3)

NOTE:由于粘土板很难书写很多符号,因此古巴比伦人才需要尽可能少的记号来表示数,也正是这一硬件限制才促成了按位计数法的产生。

罗马人:使用现在也能常见到的罗马数字来计数,类似I、V、XI等,5进制和10进制混合的计数法。

玛雅人:数数从0开始,使用20进制计数法。

印度人:引进古巴比伦的按位计数法的同时,认识到0也是数字,采用的是10进制。现在使用的0、1、2、3、4、5、6、7、8、9被成为阿拉伯数字,可能是因为将印度数字引入欧洲的是阿拉伯人吧。

1.2 计数的意义

为什么人类要发明计数法呢?

罗马数字中,将1、2、3写为I、II、III,4写作IIII或IV,5写作V,为什么不将5也记为IIII呢?显而易见,在罗马数字这种表示法下,数越大越难处理,比如,IIIIIII和IIIIII哪个更大不能马上得知,同时在表示一个较大的数时非常费劲。

从历史上计数的方式可以看出,为了高效地解决较大数的表示,古人想出了两种方法——10进制计数和按位计数

而如今,人类发展到可以分析基因序列、探索宇宙的阶段了,处理的数据呈爆炸性的增长,按位计数法已经力不从心了,比如,100000000和1000000000哪个更大也不能直观的看出了,因此,衍生出了新的计数法——指数计数法。刚才的2个数,如果写为10^8和10^9就能一眼看出大小了。

1.3 指数法则

我相信很多人在看到10^2时,是认为10^2是2个10相乘,那么10的0次方是什么?

如果10的0次方是0个10相乘的话,那么10^0应该等于0,而不是1,问题出在哪里呢?

我们对于指数k^n的定义是k个n相乘,那么如果k=0或者k=-1怎么理解呢?-1个10相乘?很明显,我们对于指数的理解是比较局限的,那么如何理解指数呢?

我们把指数的计算放到一起来寻找规律:

103=1000

102=100

101=10

100=?

每当右上角的数字减1时,值就变位原来的10分之1,那么对于指数的定义呼之欲出:

那么10^-1也很好解释和理解了。

2. 0的作用

2.1 占位

10进制表示的数1024中的0表示百位上“没有”了,但这个0却不能忽略,一旦忽略了,就变成了124,变成了另外一个数了。

2.2 标准、简化

在指数计数法中,使用0以后,能够将按位计数法中的各个数位所对应的大小统一表示成10n。否则需要单独处理”1”这个数位,也就是个位。0在这里标准化了对于位数的表达。正因为有了这个标准,按位计数法的各个数位也能统一写为ak∗10k

3. 程序员中的0

3.1 需求中的0

需求:有一种胶囊,3天服用后停用1次,要求比较方便的服药

方案:设计一个“没有药效”的胶囊,放在事先准备好的有标号或者日期的盒子中,在停用的部分放上“没有药效”的胶囊

NOTE:这里正好借用了0占位的作用,便于统一处理

3.2 设计中的0

队列:队列是一种先入先出的数据结构,这个是广为人知的,为了引入下面的情况,先给出队列的伪代码。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

structnode_t {

TYPE value;

node_t *next;

}

structqueue_t {

node_t *head;

node_t *tail;

}

initialize(queue_t *queue) {

queue->head = ; //初始化头节点为空

queue->tail = ; //初始化尾节点为空

}

enqueue(queue_t *queue, TYPE value) {

node_t *node = newnode_t;

node->value = value;

node->next = ;

if(queue->tail != ) { //尾节点不为空,则将新节点增加到尾部

queue->tail->next = node;

}

if(queue->head == ) { //头节点为空,则将头指针指向这个节点

queue->head = node;

}

queue->tail = node

}

dequeue(queue_t * queue, TYPE *value) {

node_t *node = queue->head;

if(node == ) { //队列为空

returnfalse;

}

*value = node->value;

new_head_node = node->next;

if(new_head_node == ) { //队列中的最后一个元素出队列时,更新tail指针

queue->tail = ;

}

queue->head = new_head_node;

FREE(node);

returntrue;

}

多线程下的有锁队列:在多线程环境下,enqueue和dequeue都会对head和tail指针进行操作,为了保证线程安全,普通的做法加入一个队列锁,伪代码如下。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

structnode_t {

TYPE value;

node_t *next;

}

structqueue_t {

node_t *head;

node_t *tail;

pthread_mutex_t q_lock;

}

initialize(queue_t *queue) {

queue->head = ; //初始化头节点为空

queue->tail = ; //初始化尾节点为空

queue->q_lock = FREE; //锁初始化为free

}

enqueue(queue_t *queue, TYPE value) {

node_t *node = newnode_t;

node->value = value;

node->next = ;

lock(&queue->q_lock); //锁住队列

if(queue->tail != ) { //尾节点不为空,则将新节点增加到尾部

queue->tail->next = node;

}

if(queue->head == ) { //头节点为空,则将头指针指向这个节点

queue->head = node;

}

queue->tail = node;

unlock(&queue->q_lock); //释放锁

}

dequeue(queue_t * queue, TYPE *value) {

lock(&queue->q_lock); //锁住队列

node_t *node = queue->head;

if(node == ) { //队列为空

returnfalse;

}

*value = node->value;

new_head_node = node->next;

if(new_head_node == ) { //队列中的最后一个元素出队列时,更新tail指针

queue->tail = ;

}

queue->head = new_head_node;

unlock(&queue->q_lock); //解锁

free(node);

returntrue;

}

上面的做法,每次enqueue和dequeue操作都会锁住整个队列,当使用的线程多的时候,就存在锁的竞争造成的性能瓶颈。那么,有没有办法来降低锁的粒度呢?

在上面的伪代码中:

因此,大部分的时候enqueue或者dequeue的时候没必要锁住整个队列。所以,拆锁的方向很明确了——头部锁&尾部锁。

考虑比较特殊的情况:

在这种情况下,如果使用头部和尾部锁,两个锁是分开申请的,因此显而易见,很容易造成死锁。有没有什么优雅的方法解决这个问题呢?

在队列从空到有和从有到空的两种特殊情况下,是需要一些特殊的处理。如果队列一直不为空,那么

很显然,引入一个没有实际意义的”空节点“,那么队列就不会为空,上述的问题也就不复存在了,伪代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

structnode_t {

TYPE value;

node_t *next;

}

structqueue_t {

node_t *head;

node_t *tail;

pthread_mutex_t q_head_lock;

pthread_mutex_t q_tail_lock;

}

initialize(queue_t *queue) {

node_t *node = newnode_t;

node->next = ;

queue->head = node; //初始化头节点为空

queue->tail = node; //初始化尾节点为空

queue->q_head_lock = FREE; //头部锁初始化为free

queue->q_tail_lock = FREE; //尾部锁初始化伪free

}

enqueue(queue_t *queue, TYPE value) {

node_t *node = newnode_t;

node->value = value;

node->next = ;

lock(&queue->q_tail_lock); //锁住尾节点

node_t *tail = queue->tail;

tail->next = node; //尾节点不为空,则将新节点增加到尾部

tail = node;

unlock(&queue->q_tail_lock); //释放锁

}

dequeue(queue_t * queue, TYPE *value) {

lock(&queue->q_head_lock); //锁住头节点

node_t *node = queue->head;

new_head_node = node->next;

if(new_head_node == ) { //此时队列为空,头节点已经指向了空节点

unlock(&queue->q_head_lock);

returnfalse;

}

*value = node->value;

queue->head = new_head_node;

unlock(&queue->q_lock); //解锁

free(node);

returntrue;

}

,