2016年11月9日,国际学术权威刊物自然出版集团《Nature》杂志在线发表了瑞士苏黎世联邦理工学院Grégoire Courtine研究员的一篇研究论文,研究报道了研究团队报告了一种最新研发的装置——可植入体内的无线“大脑—脊柱接口”,实验中,它成功地让猴子在发生脊髓损伤后最短仅用6天就恢复了瘫痪下肢的运动能力该装置采用的元件已获批可用于人体研究,标志着用该方法治疗人类半身不遂往临床测试方向又迈进了一步,现在小编就来说说关于脊髓损伤的物理治疗最新进展?下面内容希望能帮助到你,我们来一起看看吧!

脊髓损伤的物理治疗最新进展(Nature:瑞士科学家发表脊髓损伤瘫痪治疗方法研究论文)

脊髓损伤的物理治疗最新进展

2016年11月9日,国际学术权威刊物自然出版集团《Nature》杂志在线发表了瑞士苏黎世联邦理工学院Grégoire Courtine研究员的一篇研究论文,研究报道了研究团队报告了一种最新研发的装置——可植入体内的无线“大脑—脊柱接口”,实验中,它成功地让猴子在发生脊髓损伤后最短仅用6天就恢复了瘫痪下肢的运动能力。该装置采用的元件已获批可用于人体研究,标志着用该方法治疗人类半身不遂往临床测试方向又迈进了一步。

过往研究显示,参与规划并执行运动的脑区所破译的信号,如果能有效使用,则有可能控制机械臂或假手的运动,此前案例还显示其可以控制病人瘫痪的手。但是,下肢的情况并不在此列,因为用这种方法恢复行走过程中复杂的腿肌激活模式和协调性,一直以来都没有获得成功。

此次,瑞士苏黎世联邦理工学院的格雷古瓦·库尔蒂纳团队,联合中国、法国、德国、意大利、英国和美国的研究人员,开发出一种“大脑—脊柱接口”。该装置可以破译来自控制腿部运动的运动皮质区信号,从而刺激在脊髓下部“热点”植入的电极,正是这些“热点”负责调节腿肌的屈伸。

实验中,研究团队在两只因局部脊髓损伤而导致一条腿瘫痪的猕猴身上进行了测试。一只在没有经过特殊训练的情况下,于伤后6天就恢复了瘫痪下肢的部分运动能力;另一只经过两个星期也恢复到相同水平。

论文随附的题为“Spinal-cord injury: Neural interfaces take another step forward”观点文章中,英国纽卡斯尔大学安德鲁·杰克森表示,考虑到近年来其它神经接口在猴子到人之间的快速转化,现在有理由推测,在2020年之前,人类将能够看到一个“大脑—脊髓界面”的首次临床展示。

原文链接:

原文摘要:

Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1, 2, 3 have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis1, 4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6, 7. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8, 9, 10. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain–spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

,