作者:何颖妍 刘加军
本文为作者授权医脉通发布,未经授权请勿转载。
摘要:
急性髓系白血病(AML)是常见的血液系统恶性肿瘤。随着人口寿命的延长,AML在老年人中的发病率日益增高,约75%AML患者发病年龄为55~65岁,中位发病年龄约为68岁[1]。然而由于老年AML患者多存在着不良的细胞遗传学异常,药物蛋白活性降低,先前血液疾病病史及合并多种器官功能衰退等等原因,与年轻AML患者相比,老年患者的预后往往要差得多,65-75岁患者的5年总生存(OS)率不到25%,70岁以上患者的5年OS率<10%,而≤50岁患者的5年OS率约为50%[2]。
老年AML患者在选择化疗药物和疗程时,仍面临很大的风险和挑战。随着医疗技术水平的提高和二代基因测序技术的发展,越来越多的新药和新疗法逐渐应用于老年AML的治疗当中,其治疗领域发生了迅速且重大的变化。本文将围绕老年AML患者的特点及近年来相关的治疗新进展展开概述。
关键词:老年人,急性白血病,治疗进展,去甲基化药物,新型靶向药物
昨天,我们对老年AML近年来相关治疗进展做了部分介绍(详情请戳《老年急性髓性白血病的相关治疗进展(上)》,今天,我们一起来看看老年AML新型药物和新型临床试验的最新进展吧!
四、新型药物
1 FLT3抑制剂
FLT3突变是急性髓系白血病最常见的突变之一,在65岁以上的AML患者中发生率高达20%,包括两种类型:FLT3-ITD和FLT3-TKD[21]。FLT3基因位于13qq12染色体上。它主要在人类造血祖细胞和树突状细胞中表达,在白血病细胞的增殖、分化和存活中起关键作用。FLT3/ITD基因的突变会触发多个下游信号级联反应,并最终导致白血病细胞的凋亡和分化过程受到抑制,促使白血病细胞增殖失控[22]。FLT3抑制剂根据抑制剂与FLT3特异性结合的程度可分为一代抑制剂和二代抑制剂。第一代FLT3抑制剂为多途径抑制剂,主要包括米哚妥林和索拉非尼。
在美国学者Uy GLMS等人设计一个多中心单臂2期研究中,纳入了54位≥60岁的FLT3突变AML患者(其中39位是FLT3/ITD阳性),并在临床试验的诱导、巩固和维持疗法当中添加了索拉非尼。最终FLT3/ITD患者的1年总生存(OS)率达到62%,无病生存期(DFS)和OS分别为12.2和15.0个月[23]。说明,将索拉非尼添加到化疗中用以治疗伴有FLT3/ITD突变的AML是可行的,并且可以明显改善FLT3突变的老年AML的生存率。
2 Hedgehog(HH)通路抑制剂
Hedgehog信号传导通路是胚胎和器官发育的重要的介体之一。它影响着组织干细胞的分化、增殖及凋亡过程,并已与各种人类癌症的发病机制有关[24]。Glasdegib是一种选择性抑制Smoothened的靶向药物,通过抑制SMO受体来抑制HH通路的激活,从而提高白血病细胞对细胞毒药物的敏感性,表现出抗白血病活性[25]。
在一项小型的2期临床试验中对难治性MDS和CMML的患者进行了单药glasdegib的评估。Glasdegib具有良好的耐受性,但单药活性有限[26]。随后在一项随机2期临床试验中,针对不适合进行强化化疗的高风险MDS患者,比较了glasdegib 100mg联合小剂量阿糖胞苷与低剂量阿糖胞苷的疗效和安全性[27],结果表明glasdegib组的完全缓解(CR)率显著更高(glasdegib组为15%,低剂量阿糖胞苷组为2%),中位OS更长(分别为8.3个月和4.9个月)。基于这一2期研究发现,FDA批准了先前未接受过AML治疗的患者对glasdegib的优先审查。2018年,FDA批准了glasdegib用于治疗≥75岁的新诊断的老年AML或有合并症而不能使用密集诱导化疗的AML患者。
3 异枸橼酸脱氢酶抑制剂(IDH1/2)抑制剂
异枸橼酸脱氢酶是三羧酸循环中将异柠檬酸转化为α-酮戊二酸的关键代谢酶。IDH1/2突变约见于16%的AML患者,在老年AML和WBC低的老年患者中可能更常见[29],可使癌细胞的获得能力增强,导致分泌并累积大量的竞争性代谢物D-2-羟基谷氨酸(D-2HG),过量的D-2HG会干扰细胞代谢和表观遗传调控,从而促进肿瘤发生。实际上,高水平的D-2HG会抑制α-酮戊二酸依赖性双加氧酶(包括组蛋白和DNA脱甲基酶),从而导致组蛋白和DNA超甲基化,并最终导致细胞分化障碍[28]。
Ivosidenib和Enasidenib分别是IDH1和IDH2抑制剂,被FDA批准用于治疗成人难治性/复发性AML与伴IDH1/2突变的AML。IDH突变通常伴有DNA异常甲基化,因此IDH抑制剂与去甲基化剂结合可能成为伴IDH突变AML老年患者的主要治疗方法之一,且已初步显示出良好的耐受性[30]。
4 组蛋白去乙酰化酶抑制剂
组蛋白去乙酰化酶(histone deacetylases,HDAC)是基因表达中重要的蛋白质,可通过逆转组蛋白乙酰化状态,直接参与基因表达的表观遗传调控和细胞活性控制过程[31]。组蛋白脱乙酰酶抑制剂(histone deacetylases inhibitors,HDACis)能抑制HDAC的功能活性,改变组蛋白和非组蛋白的组成[32]。HDACi活性导致组蛋白乙酰化水平增加,进而促进每种细胞类型中不同沉默基因的重新表达。虽然HDACi确切的作用机制尚不清楚,但已有研究表明,它们在细胞表观遗传和非表观遗传调控中有重要作用,能诱导癌细胞分化、细胞周期阻滞和凋亡[33]。
西达本胺是一种在中国开发的新型HADCi口服制剂,属于苯酰胺类化合物,它可以选择性地抑制HDAC1、HDAC2、HDAC3和HDAC10,特别是对于HDAC2和HDAC3[34],产生抗肿瘤作用。一项关于西达本胺和地西他滨联合诱导髓样白血病细胞凋亡的临床试验表明,在目前的研究中,低剂量地西他滨和西达本胺以时间和剂量依赖性方式抑制K562和THP-1阳性细胞的增殖。另外,与单独使用每种药物相比,两者的组合对细胞增殖表现出增强的抑制作用[35]。并且,西达本胺能增强地西他滨对髓样白血病细胞的凋亡作用[35]。这项研究的结果提供了一种将西达本胺与低剂量的表观遗传药物联合用于临床治疗中的白血病治疗的有前途的化疗策略,将是未来老年白血病研究的新焦点。
五、新型临床试验
随着二代测序技术的发展及AML各种分子机制的深入研究,越来越多的临床试验也得以开展起来。如对于新诊断的的CD33 AML患者,吉妥珠单抗奥唑米星(Gemtuzumab Ozogamicin,GO)可能是一种治疗选择,特别是在那些具有良好或中等风险细胞遗传学的患者中[36]。3期EORTC-GIMEMA AML-19试验在AML患者(>75或61–75岁,评分较差或不愿接受标准化疗的最佳支持治疗的患者)中,比较了GO与最佳支持治疗。部分学者认为,对不能耐受常规化疗的老年AML,小剂量GO方案可能减缓疾病进展,使生存获益,但面对8个月维持治疗的疗效风险,GO的累积剂量与毒性的关系等值得进一步探索[37]。
其他新兴的细胞免疫治疗、PD-1靶向治疗、同种异体造血干细胞移植、更多的分子靶向药物等治疗也在进一步临床试验当中,相信将会给老年AML患者治疗带来新一轮曙光。
综上所述,随着研究的深入和医学的发展,老年AML患者的治疗发生了巨大的变化,越来越多的研发新药成为临床上新一代的选择,更多的联合化疗方案的疗效也愈发有目共睹。所以对老年AML患者,在临床中应充分考虑患者的年龄、体力状况、分子学异常、耐药情况、经济背景等各方面因素,为其制定和完善其个体化、分层化的治疗方案,使其获益最大化。
参考文献:
[1]. SEER cancer stat facts: acute myeloid leukemia [Internet]. Bethesda, MD: National Cancer Institute; 2020. Available from: http://seer.cancer.gov/statfacts/html/amyl.html
[2]. Webster JA, Pratz KW. Acute myeloid leukemia in the elderly: therapeutic options and choice. Leuk Lymphoma. 2018;59(2):274-287. doi:10.1080/10428194.2017.1330956
[3]. SEER Stat Fact Sheets. Leukemia (2010-2017). (2020). Available from: http://seer.cancer.gov/statfacts/html/leuks.html
[4]. Luger SM. Acute myeloid leukemia: How to treat the fit patient over age 75?. Best Pract Res Clin Haematol. 2019;32(4):101105. doi:10.1016/j.beha.2019.101105
[5]. Wei AH, Strickland SA Jr, Hou JZ, et al. Venetoclax Combined With Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study. J Clin Oncol. 2019;37(15):1277-1284. doi:10.1200/JCO.18.01600
[6]. Chen Y, Yang T, Zheng X, et al. The outcome and prognostic factors of 248 elderly patients with acute myeloid leukemia treated with standard-dose or low-intensity induction therapy. Medicine (Baltimore). 2016;95(30):e4182. doi:10.1097/MD.0000000000004182
[7]. Wei AH, Strickland SA Jr, Hou JZ, et al. Venetoclax Combined With Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study. J Clin Oncol. 2019;37(15):1277-1284. doi:10.1200/JCO.18.01600
[8]. Wang ES. Treating acute myeloid leukemia in older adults. Hematology Am Soc Hematol Educ Program. 2014;2014:14–20.
[9]. NCCN Clinical Practice Guidelines in Oncology Acute Myeloid Leukemia.
[10]. He PF, Zhou JD, Yao DM, et al. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Oncotarget. 2017;8(25):41498-41507. doi:10.18632/oncotarget.17241
[11]. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of th eEuropean Leukemia Net.Blood.2010;115(3):453–474. doi:10.1182/blood-2009-07-235358.
[12]. Gupta N, Miller A, Gandhi S, Ford LA, Vigil CE, Griffiths EA, Thompson JE, Wetzler M, Wang ES. Comparison of epigenetic versus standard induction chemotherapy for newly diagnosed acute myeloid leukemia patients ≥ 60 years old. Am J Hematol. 2015;90:639–46.
[13]. Quintás-Cardama A, Ravandi F, Liu-Dumlao T, Brandt M, Faderl S, Pierce S, Borthakur G, Garcia-Manero G, Cortes J, Kantarjian H. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood. 2012;120:4840–5.
[14]. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, Wilson RK, Baty JD, Duncavage EJ, Tandon B, Lee YS, Wartman LD, Uy GL, et al.
TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016;375:2023–2036.
[15]. Guerra VA, DiNardo C, Konopleva M. Venetoclax-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(2):145-153. doi:10.1016/j.beha.2019.05.008
[16]. Tsao.T,Shi.Y,Kornblau S,et al. Concomitant inhibition of DNA methytransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells[J]. Ann Hematol,2012,91:1861-1870
[17]. 沈杨.分子靶向药物在老年急性髓性白血病中的应用[J].临床血液学杂志,2020,33(03):302-306.
[18]. Carter BZ,Mak PY,Tao W,et al.Mcl-1/CDK9 targeting by AZD5991/AZD4573 overcomes intrinsic and acquired venetoclax resistance in vitro and in vivo in PDX model of AML through modulation of cell death and metabolic functions[J].Blood,2018,132(Suppl 1):768-768.
[19]. Aldoss I,Yang D,Pillai R,et al.Response to venetoclax and hypomethylating agents among prognostic risk groups and genetic subtypes of acute myeloid leukemia[J].Blood,2018,132(Suppl 1):334 LP-334.
[20]. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7-17. doi:10.1182/blood-2018-08-868752
[21]. Bullinger L,Döhner K,Döhner H.Genomics of Acute Myeloid Leukemia Diagnosis and Pathways[J].J Clin Oncol,2017,35:934-946.
[22]. Gallogly MMLH, Cooper BW. Midostaurin: a novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Adv Hematol. 2017;8(9):245–261. doi: 10.1177/2040620717721459.
[23]. Uy GLMS, Laumann K, Marcucci G, Zhao W, Levis MJ, Klepin HD, Baer MR, Powell BL, Westervelt P, DeAngelo DJ, Stock W, Sanford B, Blum WG, Bloomfield CD, Stone RM, Larson RA. A phase 2 study incorporating sorafenib into the chemotherapy for older adults with FLT3-mutated acute myeloid leukemia: CALGB 11001. Blood Adv. 2017;1(5):331–340. doi: 10.1182/bloodadvances.2016003053.
[24]. doi: 10.3390/cells8050394PMCID: PMC6562674
Recent Advances in the Clinical Targeting of Hedgehog/GLI Signaling in Cancer
[25]. Wolska-Washer A, Robak T. Glasdegib in the treatment of acute myeloid leukemia. Future Oncol. 2019;15(28):3219-3232. doi:10.2217/fon-2019-0171
[26]. Lancet J.E., Komrokji R.S., Sweet K.L., Duong V.H., McGraw K.L., Zhang L., Nardelli L.A., Ma Z., Reich R.R., Padron E., et al. Phase 2 Trial of Smoothened (SMO) Inhibitor PF-04449913 (PF-04) in Refractory Myelodysplastic Syndromes (MDS) Blood. 2016;128:3174.
[27]. Cortes J.E., Heidel F.H., Heuser M., Fiedler W., Smith B.D., Robak T., Montesinos Fernandez P., Ma W.W., Shaik M.N., Zeremski M., et al. A Phase 2 Randomized Study of Low Dose Ara-C with or without Glasdegib (PF-04449913) in Untreated Patients with Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome. Blood. 2016;128:99.
[28]. Winer ES, Stone RM. Novel therapy in Acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol. 2019;10:2040620719860645. Published 2019 Jul 10. doi:10.1177/2040620719860645
[29]. Koszarska M, Bors A, Feczko A, et al. Type and location of isocitrate dehydrogenase mutations influence clinical characteristics and disease outcome of acute myeloid leukemia. Leuk Lymphoma. 2013;54(5):1028-1035. doi:10.3109/10428194.2012.736981
[30]. Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7:22. Published 2019 Oct 22. doi:10.1186/s40364-019-0173-z
[31]. Hull E.E., Montgomery M.R., Leyva K.J. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. Biomed Res. Int. 2016;2016 doi: 10.1155/2016/8797206.
[32]. Zucchetti B., Shimada A.K., Katz A., Curigliano G. The role of histone deacetylase inhibitors in metastatic breast cancer. Breast. 2019;43:130–134. doi: 10.1016/j.breast.2018.12.001.
[33]. San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC Inhibitors in Acute Myeloid Leukemia. Cancers (Basel). 2019;11(11):1794. Published 2019 Nov 14. doi:10.3390/cancers11111794.
[34]. Gong K, Xie J, Yi H, Li W. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J. 2012;443:735–746.
[35]. Xu F, Guo H, Shi M, et al. A combination of low-dose decitabine and chidamide resulted in synergistic effects on the proliferation and apoptosis of human myeloid leukemia cell lines. Am J Transl Res. 2019;11(12):7644-7655. Published 2019 Dec 15.
[36]. Lai C, Doucette K, Norsworthy K. Recent drug approvals for acute myeloid leukemia. J Hematol Oncol. 2019;12(1):100. Published 2019 Sep 18. doi:10.1186/s13045-019-0774-x
[37]. 江滨,廖鹏军.吉妥珠单抗奥唑米星显著改善老年急性髓系白血病患者的总生存率[J].循证医学,2017,17(02):85-87.
,