进制转换是人们利用符号来计数的方法。进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。基数是指,进位计数制中所采用的数码(数制中用来表示“量”的符号)的个数。位权是指,进位制中每一固定位置对应的单位值。
常见的进制
十进制:0 ,1,2,3,4,5,6,7,8,9,10
二进制:0,1,10,11,100,101,111
八进制:0,1,2,3,4,5,6,7,10
十六进制:0~10,A,B,C,D,E,F
进制转换
任何进制中,每个数都可以按位权展开成各个数位上的数字乘以对应数位的位权,再相加的形式
二进制--->十进制
二进制数转换为十进制数
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:0110 0100,转换为10进制为:
下面是竖式:
0110 0100 换算成十进制
从右往左开始换算
第0位 0 * 20 = 0
第1位 0 * 21 = 0
第2位 1 * 22 = 4
第3位 0 * 23 = 0
第4位 0 * 24 = 0
第5位 1 * 25 = 32
第6位 1 * 26 = 64
第7位 0 * 27 = 0
公式:第N位2(N)
---------------------------
100
用横式计算为:
0 * 20 0 * 21 1 * 22 0 * 23 0 * 24 1 * 25 1* 26 0 * 27 = 100
除0以外的数字0次方都是1,但0乘以多少都是0,所以我们也可以直接跳过值为0的位:
1 * 22 1 * 25 1*26 = 100
十进制--->二进制
对于整数部分,用被除数反复除以2,除第一次外,每次除以2均取前一次商的整数部分作被除数并依次记下每次的余数。另外,所得到的商的最后一位余数是所求二进制数的最高位。
对于小数部分,采用连续乘以基数2,并依次取出的整数部分,直至结果的小数部分为0为止。故该法称“乘基取整法”。
给你一个十进制,比如:6,如果将它转换成二进制数呢?
10进制数转换成二进制数,这是一个连续除以2的过程:
把要转换的数,除以2,得到商和余数,
将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。
,