三年级数学巧算递等式练习
一、加法中的巧算
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1 9=10,3 7=10,
2 8=10,4 6=10,
5 5=10。
又如:11 89=100,33+67=100,
22 78=100,44 56=100,
55 45=100,
在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345, 46802→53198,
87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:
①36 87 64②99 136+101
③ 1361+972+639+28
解:①式=(36+64)+87
=100+87=187
②式=(99+101)+136
=200 136=336
③式=(1361+639)+(972+28)
=2000 1000=3000
3.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203
解:①式=(188 12) (873-12)(熟练之后,此步可略)
=200 861=1061
②式=(548-4)+(996+4)
=544 1000=1544
③式=(9898+102)+(203-102)
=10000 101=10101
4.竖式运算中互补数先加。
如:
二、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27
② 1000-90-80-20-10
解:①式= 300-(73+ 27)
=300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)
② 2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159
=2100-159
=1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397
②323-189
③467+997
④987-178-222-390
解:①式=500+6-400 3(把多减的 3再加上)
=109
②式=323-200 11(把多减的11再加上)
=123 11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390
=987-400-400 10=197
三、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“ ”变“-”,“-”变“ ”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b c
例6 ①100+(10+20+30)
② 100-(10+20 3O)
③ 100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7 计算下面各题:
① 100+10+20+30
② 100-10-20-30
③ 100-30+10
解:①式=100+(10 20 30)
=100+60=160
②式=100-(10+20 30)
=100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8 计算 325+46-125+54
解:原式=325-125+46 54
=(325-125) (46+54)
=200 100=300
注意:每个数前面的运算符号是这个数的符号.如 46,-125, 54.而325前面虽然没有符号,应看作是 325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9 计算9 2-9+3
解:原式=9-9+2 3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10 计算 78 76+83+82 77+80+79+85
=640
解:
基础讲解
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和。这种“化零为整”的思想是加减法巧算的基础。
加法具有以下两个运算律:
加法交换律:两个数相加,交换加数的位置,它们的和不变。
即 a b=b a 一般地,多个数相加,任意改变相加的次序,其和不变。(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个相加,再与第一个数相加,它们的和不变。即
a b c=(a b) c=a (b c)
借数凑整法:直观上凑整不明显的可以“借数”凑整。
(1)在加、减法混合运算中,去括号时,如果括号前面是“ ”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“ ”变为“-”,变为“ ”。
(2)在加减法混合运算中,添括号时,如果添加的括号前面是“ ”号,那么括号内的数的原运算符号不变;如果添加的括号前面“—”号,那么括号内的数的原运算符号“ ”变为“-”,“-”变为“ ”
【重难点】灵活运用这些性质,可得减法或加减法混合计算的一些
简便方法。
一、加法中的凑整
知识点 1:分组凑整法
例 1 用简便方法计算:
(1)783 25 175
(2)2803 (2178 5497) 4722
知识点2:加补凑整法
例1:
(1)2458 503
(2)574 798
例 2:
995 996 997 998 999
二、减法中的凑整
例:
(1)956-597
(2)3475-308
三、去添括号法则
例1:
1654-(54 78)
例2:
2937-493-207
,