一、B-树

1. B-树是一种多路搜索树(并不一定是二叉的)

1970年,R.Bayer和E.mccreight提出了一种适用于外查找的树,它是一种平衡的多叉树,称为B树(或B-树、B_树)。

2. 一棵m阶B树(balanced tree of order m)是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:

  1. 根结点至少有两个子女;
  2. 每个非根节点所包含的关键字个数 j 满足:┌m/2┐ - 1 <= j <= m - 1;
  3. 除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数 k 满足:┌m/2┐ <= k <= m ;
  4. 所有的叶子结点都位于同一层。
二、特点:

是一种多路搜索树(并不是二叉的):

  1. 定义任意非叶子结点最多只有M个儿子;且M>2;
  2. 根结点的儿子数为[2, M];
  3. 除根结点以外的非叶子结点的儿子数为[M/2, M];
  4. 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  5. 非叶子结点的关键字个数=指向儿子的指针个数-1;
  6. 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i 1];
  7. 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  8. 所有叶子结点位于同一层;

如:(M=3)

满二叉树节点计算公式(讲点34)(1)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果

命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为

空,或已经是叶子结点;

三、B-树的特性:
  1. 关键字集合分布在整颗树中;
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束;
  4. 其搜索性能等价于在关键字全集内做一次二分查找;
  5. 自动层次控制;
四、B 树

B 树是一种树数据结构,是一个n叉树,每个节点通常有多个孩子,一棵B 树包含根节点、内部节点和叶子节点。根节点可能是一个叶子节点,也可能是一个包含两个或两个以上孩子节点的节点。

五、用途:

B 树通常用于数据库和操作系统的文件系统中。NTFS, ReiserFS, NSS, XFS, JFS, ReFS 和BFS等文件系统都在使用B 树作为元数据索引。B 树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B 树元素自底向上插入。

六、B 树的定义

1. B 树是应文件系统所需而出的一种B-树的变型树。一棵m阶的B 树和m阶的B-树的差异在于:

  1. 有n棵子树的结点中含有n个关键字,每个关键字不保存数据,只用来索引,所有数据都保存在叶子节点。
  2. 所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
  3. 所有的非终端结点可以看成是索引部分,结点中仅含其子树(根结点)中的最大(或最小)关键字。
    通常在B 树上有两个头指针,一个指向根结点,一个指向关键字最小的叶子结点。

2. B 树是B-树的变体,也是一种多路搜索树:

  1. 其定义基本与B-树同,除了:
  2. 非叶子结点的子树指针与关键字个数相同;
  3. 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i 1])的子树(B-树是开区间);
  4. 为所有叶子结点增加一个链指针;
  5. 所有关键字都在叶子结点出现;

如:(M=3)

满二叉树节点计算公式(讲点34)(2)

B 的搜索与B-树也基本相同,区别是B 树只有达到叶子结点才命中(B-树可以在

非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

七、B 的特性:
  1. 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  2. 不可能在非叶子结点命中;
  3. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  4. 更适合文件索引系统;
八、B*树:

1. 是B 树的变体,在B 树的非根和非叶子结点再增加指向兄弟的指针;

满二叉树节点计算公式(讲点34)(3)

2. B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B 树的1/2);

B 树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B 树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;所以,B树分配新结点的概率比B 树要低,空间使用率更高;

九、小结:

1. B-树:

多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

2. B 树:

在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B 树总是到叶子结点才命;

3. B*树:

在B 树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

十、B-树,B 树与B*树的优缺点比较

首先注意:B树就是B-树,"-"是个连字符号,不是减号。

B-树是一种平衡的多路查找(又称排序)树,在文件系统中有所应用。主要用作文件的索引。其中的B就表示平衡(Balance)

B 树有一个最大的好处,方便扫库,B树必须用中序遍历的方法按序扫库,而B 树直接从叶子结点挨个扫一遍就完了。

B 树支持range-query(区间查询)非常方便,而B树不支持。这是数据库选用B 树的最主要原因。

比如要查 5-10之间的,B 树一把到5这个标记,再一把到10,然后串起来就行了,B树就非常麻烦。B树的好处,就是成功查询特别有利,因为树的高度总体要比B 树矮。不成功的情况下,B树也比B 树稍稍占一点点便宜。

B树的优势是当你要查找的值恰好处在一个非叶子节点时,查找到该节点就会成功并结束查询,而B 树由于非叶节点只是索引部分,这些节点中只含有其子树中的最大(或最小)关键字,当非终端节点上的关键字等于给点值时,查找并不终止,而是继续向下直到叶子节点。因此在B 树中,无论查找成功与否,都是走了一条从根到叶子节点的路径。

有很多基于频率的搜索是选用B树,越频繁query的结点越往根上走,前提是需要对query做统计,而且要对key做一些变化。 另外B树也好B 树也好,根或者上面几层因为被反复query,所以这几块基本都在内存中,不会出现读磁盘IO,一般已启动的时候,就会主动换入内存。 mysql底层存储是用B 树实现的,因为内存中B 树是没有优势的,但是一到磁盘,B 树的威力就出来了。

B*树

是B 树的变体,在B 树的非根和非叶子结点再增加指向兄弟的指针;B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为2/3(代替B 树的1/2);

B 树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B 树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针; 所以,B*树分配新结点的概率比B 树要低,空间使用率更高;

Java程序员福利:我把2019近一年经历过的Java岗位面试,和一些刷过的面试题都做成了PDF,PDF都是可以免费分享给大家的,关注私信我:【101】,免费领取!


,