以下文章来源于磁共振之家 ,作者MR LiaoY


海马体是承载机体认知功能的重要脑区域,在人类的学习认知、记忆和情感等方面起到重要的作用。海马的病变可引起癫痫、阿莫茨海默病等。MRI是评估海马相关疾病的主要影像学检查方法。本期主要介绍海马的常规扫描和MRS扫描。


海马mri(海马MRI该如何扫描)(1)


检查前准备:


线圈:

多通道头/头颈联合线圈。


体位:


定位位置:

双眉水平/外耳廓。

定位时应注意激光灯对眼睛的伤害。

常规扫描方位:

斜横轴位、斜冠状位为主,斜矢状位为辅。


常规扫描序列:

实现上述权重对比序列可以可采用2D、3D序列或合成MRI成像技术实现,根据需求合理调整其扫描序列。


在海马的扫描中,扫描定位像时矢状面的图像可多扫描几层,这样有利于后续更好地观察海马并准确定位。

横轴位:横轴位T1WI序列

在冠状面及矢状面上定位,在矢状面上定位线平行海马长轴,冠状位上调整角度,使定位线平行两侧颞叶连线,双侧对称扫描,扫描范围包括整个海马结构,根据需求合理调整扫描范围,需包括整个病变范围。

海马mri(海马MRI该如何扫描)(2)

FOV

220-240mm

Phase 方向

RL

层厚/间距

≤3.0/0.5-1.0mm

矩阵

≥320*256


海马mri(海马MRI该如何扫描)(3)


横轴位: 横轴位T2加权序列

复制横轴位T1WI定位线。

海马mri(海马MRI该如何扫描)(4)

FOV

220-240mm

Phase 方向

RL

层厚/间距

≤3.0/0.5-1.0mm

矩阵

≥320*256


海马mri(海马MRI该如何扫描)(5)

T2 FLAIR序列是评估颞叶、海马区硬化最重要序列。


冠状位:冠状位T1WI序列

在矢状位和横轴位上定位。在矢状面上找到显示海马结构最好的层面,定位线垂直于海马的长轴,在横轴位上调整角度,使定位线垂直于大脑中线,双侧对称扫描。扫描范围前至海马头后至侧脑室后角,包括整个海马结构。根据需求合理调整扫描范围,需包括整个病变范围。

海马mri(海马MRI该如何扫描)(6)

FOV

220-240mm

Phase 方向

RL

层厚/间距

≤4.0/0.5-1.0mm

矩阵

≥320*256



海马mri(海马MRI该如何扫描)(7)

斜冠状位T1WI序列是海马扫描中一个非常重要的序列,该高分辨率的图像不但可以更好显示颞叶、海马的解剖结构,还可以进行相关指标的测量,以更好的评估海马病变。


海马mri(海马MRI该如何扫描)(8)

冠状面上呈“C”字形海马体与齿状回相连,共同形成“S”形的结构,如在内侧颞叶萎缩视觉评估量表(MTA-scale)评估阿尔兹海默症(AD)时,采用位置一致,在脑桥前部水平选择一层通过海马体部的层面来测量脉络膜裂宽度、侧脑室颞角宽度以及海马结构高度来进行视觉打分评估。

海马mri(海马MRI该如何扫描)(9)

当然,在人为的选择图像视觉测量会存在很大的主观性,目前可借助软件的自动分割测量对海马进行更为精准的评估。


冠状位:冠状位T2 FLAIR序列

复制冠状面T1WI定位线。

海马mri(海马MRI该如何扫描)(10)

FOV

220-240mm

Phase 方向

RL

层厚/间距

≤4.0/0.5-1.0mm

矩阵

≥320*224



海马mri(海马MRI该如何扫描)(11)


矢状位:矢状位T2WI序列

在横轴位和冠状位上定位,在横轴面上找到显示海马结构最好的层面,分别在两侧定位使定位线平行于海马的长轴,在冠状位上调整角度,使两侧分别于两侧颞叶底垂直,范围包括整个海马结构,需包括整个病变范围。

海马mri(海马MRI该如何扫描)(12)


FOV

220-240mm

Phase 方向

AP

层厚/间距

≤3.0/0.5-1.0mm

矩阵

≥320*256



根据实际的需求选择合适的方位进行DWI序列的扫描,海马毗邻颅底,MRI受其颅骨、空气等影响,很容易产生磁敏感伪影,采用非EPI-DWI方式可获得更好的图像质量。

海马mri(海马MRI该如何扫描)(13)

对于微小病变的显示可采用高分辨率的DWI扫描。

高分辨率DWIMUSEDWI with segmented EPIRESOVLEuCS_DWI小视野DWIFOCUSZOOM DiffusionZooMit EPI
MicroView


海马的病变在MRI上常表现为体积的变化和局部信号的增高,部分病例需要采用MRI图像进行相应数值的测量来评估海马的形态学改变。2D序列对于海马的结构和形态的评估存在很大的局限性,建议采用分辨率高、各向同性的3D序列扫描,其可多平面重建和借助软件的自动分割测量可对海马进行更为精准地评估。

基于自旋回波
SPACE
VISTA
CUBE
MATRIX
基于梯度回波

MPRAGE

TFE

BRAVO GRE-FSP


海马mri(海马MRI该如何扫描)(14)

增强扫描对于海马区非占位性病变提供的影像学信息非常有限,如需增强扫描可选取一个方位的各向同性扫描后作多平面的图像重建。


癫痫疾病中的60%-90%病例均与颞叶海马相关,并伴随着海马硬化。在MRI常规序列评估海马形态学和病理改变有限的情况下可使用MRS来补充提供更多的影像学信息。


海马mri(海马MRI该如何扫描)(15)

在形态未发生变化的海马病变,其通过对MRS代谢物间比值的分析能够对病变作出半定量的评估,为疾病的鉴别诊断提供更多的影像学信息。


海马mri(海马MRI该如何扫描)(16)

定位的精准和饱和带的合理使用是获得优异谱线的关键。单体素MRS定位时应注意横、矢、冠状位上的定位体素位置的准确性,尽量避开影响谱线质量的组织和区域(如气体,脂肪、骨质、血管等)。

单体素MRS虽然信噪比较高,但其空间分辨率较差,且很难包全整个海马结构,适合观察单发病灶或局部区域的评估。

海马mri(海马MRI该如何扫描)(19)

当病灶范围较大,肿瘤、病变信号复杂时可选用多体素MRS,多体素MRS可在图像上选定较大的感兴趣区域,且一次扫描出整个感兴趣区域的信息,更利于感兴趣区域内多个点的谱线对比评估。


海马mri(海马MRI该如何扫描)(20)

体素放置的位置不恰当、体素选择过小、饱和带放置不合理、水抑制不理想或脂峰污染等都可导致谱线不能满足诊断要求。


海马MRS成像要点:


参考文献:

孙雨龙,丁爽,罕迦尔别克·库锟,王宝龙,王云玲.T1WI-3D-MPRAGE在难治性癫痫海马及杏仁核体积上的成像研究[J].中国CT和MRI杂志,2022,(2):5-7,17.DOI:10.3969/j.issn.1672-5131.2022.02.002.

熊雪颖,梅豪,叶乃力,肖峰,鲁植艳.3.0 T MRI测定海马体积、嗅球容积、嗅沟深度与早期阿尔茨海默病的相关性[J].磁共振成像,2020,11(10):858-861.DOI:10.12015/issn.1674-8034.2020.10.005.

姚媛,王芳.海马正常解剖、发育变异及常见病变的MRI表现[J].医学影像学杂志,2021,31(8):1426-1429.

MR检查与诊断专家共识[J].中华放射学杂志,2021,55(10):1008-1023.DOI:10.3760/cma.j.cn112149-20210609-00548.

张英魁,黎丽,李金锋. 磁共振成像系统的原理及其应用[M]. 北京大学医学出版社, 2021.

陈英敏,刘蓉辉,李宝山,吴晶,孙吉林,刘连祥.海马结构MRI三维分段方法[J].中国医学影像技术,2005,21(1):37-41.DOI:10.3321/j.issn:1003-3289.2005.01.011.

何万利,黄刚,赵莲萍.认知障碍的海马多模态MRI研究进展[J].磁共振成像,2021,12(4):111-114.DOI:10.12015/issn.1674-8034.2021.04.028.

杨正汉, 冯逢, 王霄英. 磁共振成像技术指南[M]. 人民军医出版社, 2007.

陈英敏,刘蓉辉,李宝山,吴晶,孙吉林,刘连祥.海马结构MRI三维分段方法[J].中国医学影像技术,2005,21(1):37-41.DOI:10.3321/j.issn:1003-3289.2005.01.011.

END


【版权声明】本平台属公益学习平台,转载系出于传递更多学习信息之目的,且已标明作者和出处,如不希望被传播的老师可与我们联系删除

,