数学学不好,很大一部分原因是学生对于公式掌握的熟练程度不够,今天我们将初中数学的知识要点编成口诀,希望大家能熟练掌握,数学成绩能有所提高,我来为大家科普一下关于初中数学必会的知识点?下面希望有你要的答案,我们一起来看看吧!

初中数学必会的知识点(初中数学的知识要点)

初中数学必会的知识点

数学学不好,很大一部分原因是学生对于公式掌握的熟练程度不够,今天我们将初中数学的知识要点编成口诀,希望大家能熟练掌握,数学成绩能有所提高。

1特殊点的坐标特征

坐标平面点(x,y),横在前来纵在后;

(+,+),(-,+),(-,-)和(+,-),四个象限分前后;

x轴上y为0,x为0在y轴。

2象限角的平分线

象限角的平分线,

坐标特征有特点,

一、三横纵都相等,

二、四横纵确相反。

3自变量的取值范围

分式分母不为零,

偶次根下负不行;

零次幂底数不为零,

整式、奇次根全能行。

4最简根式的条件

最简根式三条件,

号内不把分母含,

幂指(数)根指(数)要互质,

幂指比根指小一点。

5平行某轴的直线

平行某轴的直线,

点的坐标有讲究,

直线平行x轴,纵坐标相等横不同;

直线平行于y轴,点的横坐标仍照旧。

6函数图象的移动规律

若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀:

左右平移在括号,

上下平移在末稍,

左正右负须牢记,

上正下负错不了。

一次函数的图象与性质的口诀

一次函数是直线,图象经过三象限;

正比例函数更简单,经过原点一直线;

两个系数k与b,作用之大莫小看,

k是斜率定夹角,b与y轴来相见,

k为正来右上斜,x增减y增减;

k为负来左下展,变化规律正相反;

k的绝对值越大,线离横轴就越远。

7二次函数的图象与性质的口诀

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象现;

开口、大小由a断,c与y轴来相见,

b的符号较特别,符号与a相关联;

顶点位置先找见,y轴作为参考线,

左同右异中为0,牢记心中莫混乱;

顶点坐标最重要,一般式配方它就现,

横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,

一般、顶点、交点式,不同表达能互换。

8反比例函数的图象与性质的口诀

反比例函数有特点,双曲线相背离得远;

k为正,图在一、三(象)限,

k为负,图在二、四(象)限;

图在一、三函数减,两个分支分别减。

图在二、四正相反,两个分支分别增;

线越长越近轴,永远与轴不沾边。

9巧记三角函数定义

初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.

一句话记定义:

一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切。

”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

10特殊三角函数值记忆

首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

11平行四边形的判定

要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。

12梯形问题的辅助线

移动梯形对角线,两腰之和成一线;

平行移动一条腰,两腰同在“△”现;

延长两腰交一点,“△”中有平行线;

作出梯形两高线,矩形显示在眼前;

已知腰上一中线,莫忘作出中位线。

13添加辅助线歌

辅助线,怎么添?

找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番。

14圆中比例线段

遇等积,改等比,横找竖找定相似;

不相似,别生气,等线等比来代替,

遇等比,改等积,引用射影和圆幂,

平行线,转比例,两端各自找联系。

15正多边形诀窍歌

份相等分割圆,n值必须大于三,

依次连接各分点,内接正n边形在眼前。

经过分点做切线,切线相交n个点。

n个交点做顶点,外切正n边形便出现。

正n边形很美观,它有内接、外切圆,

内接、外切都唯一,两圆还是同心圆,

它的图形轴对称,n条对称轴都过圆心点,

如果n值为偶数,中心对称很方便。

正n边形做计算,边心距、半径是关键,

内切、外接圆半径,边心距、半径分别换,

分成直角三角形2n个整,依此计算便简单。

16函数学习口决

正比例函数是直线,图象一定过原点,

k的正负是关键,决定直线的象限,

负k经过二四限,x增大y在减,

上下平移k不变,由引得到一次线,

向上加b向下减,图象经过三个限,

两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,

正k落在一三限,x增大y在减,

图象上面任意点,矩形面积都不变,

对称轴是角分线,x、y的顺序可交换。

二次函数抛物线,选定需要三个点,

a的正负开口判,c的大小y轴看,

△的符号最简便,x轴上数交点,

a、b同号轴左边,抛物线平移a不变,

顶点牵着图象转,三种形式可变换,

配方法作用最关键。

,