python实时口罩检测(识别率惊人的GitHub口罩检测)(1)

作者 | 一颗小树x,CSDN 博主

责编 | 唐小引

封图 | CSDN 下载自东方 IC

出品 | CSDN 博客

昨天在 GitHub 上看到一个有趣的开源项目,它能检测我们是否有戴口罩,跑起程序测试后,发现识别率挺高的,也适应不同环境,于是分享给大家。

首先感谢 AIZOOTech 的开源项目 —— FaceMaskDetection,以下为该项目的 GitHub 地址:

https://github.com/AIZOOTech/FaceMaskDetection

python实时口罩检测(识别率惊人的GitHub口罩检测)(2)

测试环境

我们采用:

先看一下效果:

python实时口罩检测(识别率惊人的GitHub口罩检测)(3)

检测出帅气的胡歌没有带口罩。红色框框是圈出人脸部分,上方的字体:NoMask ,准确率 1 (即有 100% 把握认为没带口罩)。

如果在多人的情况下,能检测出来吗?如下图所示。

python实时口罩检测(识别率惊人的GitHub口罩检测)(4)

不错不错,这个模型能同时检测多人的,并且准确高。

有人带口罩,有人没带口罩,能检测出来吗?

python实时口罩检测(识别率惊人的GitHub口罩检测)(5)

哇,这个模型很棒。检测出带口罩大叔,和两个没带口罩的小伙子。

大家可以先在网页体验一下:

https://aizoo.com/face-mask-detection.html

python实时口罩检测(识别率惊人的GitHub口罩检测)(6)

接下来,我们具体分析一下这个项目:

python实时口罩检测(识别率惊人的GitHub口罩检测)(7)

模型结构

在本项目中使用了 SSD 类型的架构,为了让模型可以实时的跑在浏览器以及终端设备上,将模型设计的非常小,只有 101.5 万个参数。模型结构在本文附录部分。

本模型输入大小为 260x260,主干网络只有 8 个卷积层,加上定位和分类层,一共只有 24 层(每层的通道数目基本都是 32\64\128),所以模型特别小,只有 101.5 万参数。模型对于普通人脸基本都能检测出来,但是对于小人脸,检测效果肯定不如大模型。

网页使用了 Tensorflow.js 库,所以模型是完全运行在浏览器里面的。运行速度的快慢,取决于电脑配置的高低。

模型在五个卷积层上接出来了定位分类层,其大小和 anchor 设置信息如下表。

python实时口罩检测(识别率惊人的GitHub口罩检测)(8)

python实时口罩检测(识别率惊人的GitHub口罩检测)(9)

工程包目录结构分析

GitHub 工程包下载:

https://github.com/AIZOOTech/FaceMaskDetection

下载完 FaceMaskDetection 压缩包后,解压后如下图:

python实时口罩检测(识别率惊人的GitHub口罩检测)(10)

python实时口罩检测(识别率惊人的GitHub口罩检测)(11)

如何运行程序?

以 TensorFlow 模型为例子,代码中 TensorFlow 版本应该是 1.x;

如果是 TensorFlow 版本是 2.x 的朋友,对应函数修改为 tf.compat.v1.xxxx,使函数与 1.x 版本兼容。

如果想运行图片:

python tenforflow_infer.py --img-path /path/to/your/img

比如,img 目录中作者放了一些图片的,选择 demo2.jpg。

python tenforflow_infer.py --img-path img/demo2.jpg

运行结果:

python实时口罩检测(识别率惊人的GitHub口罩检测)(12)

如果想运行运行视频:

python tenforflow_infer.py --img-mode 0 --video-path /path/to/video

/path/to/video 为视频所在的路径 视频名。

如果想实时使用摄像头检测:

python tenforflow_infer.py --img-mode 0 --video-path 0

这里的 0 ,代表在电脑中设备号;0 默认为电脑自带的摄像头。

如果想使用外接摄像头,可以改为 1 (比如外接上一个 USB 摄像头)。

这里看一下 tenforflow_infer.py 代码:

# -*- coding:utf-8 -*-import cv2import timeimport argparseimport numpy as npfrom PIL import Imagefrom keras.models import model_from_jsonfrom utils.anchor_generator import generate_anchorsfrom utils.anchor_decode import decode_bboxfrom utils.nms import single_class_non_max_suppressionfrom load_model.tensorflow_loader import load_tf_model, tf_inference#sess, graph = load_tf_model('FaceMaskDetection-master\models\face_mask_detection.pb')sess, graph = load_tf_model('models\face_mask_detection.pb')# anchor configurationfeature_map_sizes = [[33, 33], [17, 17], [9, 9], [5, 5], [3, 3]]anchor_sizes = [[0.04, 0.056], [0.08, 0.11], [0.16, 0.22], [0.32, 0.45], [0.64, 0.72]]anchor_ratios = [[1, 0.62, 0.42]] * 5# generate anchorsanchors = generate_anchors(feature_map_sizes, anchor_sizes, anchor_ratios)#用于推断,批大小为1,模型输出形状为[1,N,4],因此将锚点的dim扩展为[1,anchor_num,4]anchors_exp = np.expand_dims(anchors, axis=0)id2class = {0: 'Mask', 1: 'NoMask'}def inference(image, conf_thresh=0.5, iou_thresh=0.4, target_shape=(160, 160), draw_result=True, show_result=True):''' 检测推理的主要功能# :param image:3D numpy图片数组# :param conf_thresh:分类概率的最小阈值。# :param iou_thresh:网管的IOU门限# :param target_shape:模型输入大小。# :param draw_result:是否将边框拖入图像。# :param show_result:是否显示图像。'''# image = np.copy(image)output_info =height, width, _ = image.shapeimage_resized = cv2.resize(image, target_shape)image_np = image_resized / 255.0 # 归一化到0~1image_exp = np.expand_dims(image_np, axis=0)y_bboxes_output, y_cls_output = tf_inference(sess, graph, image_exp)# remove the batch dimension, for batch is always 1 for inference.y_bboxes = decode_bbox(anchors_exp, y_bboxes_output)[0]y_cls = y_cls_output[0]# 为了加快速度,请执行单类NMS,而不是多类NMS。bbox_max_scores = np.max(y_cls, axis=1)bbox_max_score_classes = np.argmax(y_cls, axis=1)# keep_idx是nms之后的活动边界框。keep_idxs = single_class_non_max_suppression(y_bboxes, bbox_max_scores, conf_thresh=conf_thresh,iou_thresh=iou_thresh)for idx in keep_idxs:conf = float(bbox_max_scores[idx])class_id = bbox_max_score_classes[idx]bbox = y_bboxes[idx]# 裁剪坐标,避免该值超出图像边界。xmin = max(0, int(bbox[0] * width))ymin = max(0, int(bbox[1] * height))xmax = min(int(bbox[2] * width), width)ymax = min(int(bbox[3] * height), height)if draw_result:if class_id == 0:color = (0, 255, 0)else:color = (255, 0, 0)cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)cv2.putText(image, "%s: %.2f" % (id2class[class_id], conf), (xmin 2, ymin - 2),cv2.FONT_HERSHEY_SIMPLEX, 1, color)output_info.append([class_id, conf, xmin, ymin, xmax, ymax])if show_result:Image.fromarray(image).showreturn output_infodef run_on_video(video_path, output_video_name, conf_thresh):cap = cv2.VideoCapture(video_path)height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)fps = cap.get(cv2.CAP_PROP_FPS)fourcc = cv2.Videowriter_fourcc(*'XVID')#writer = cv2.VideoWriter(output_video_name, fourcc, int(fps), (int(width), int(height)))total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)if not cap.isOpened:raise ValueError("Video open failed.")returnstatus = Trueidx = 0while status:start_stamp = time.timestatus, img_raw = cap.readimg_raw = cv2.cvtColor(img_raw, cv2.COLOR_BGR2RGB)read_frame_stamp = time.timeif (status):inference(img_raw,conf_thresh,iou_thresh=0.5,target_shape=(260, 260),draw_result=True,show_result=False)cv2.imshow('image', img_raw[:, :, ::-1])cv2.waitKey(1)inference_stamp = time.time# writer.write(img_raw)write_frame_stamp = time.timeidx = 1print("%d of %d" % (idx, total_frames))print("read_frame:%f, infer time:%f, write time:%f" % (read_frame_stamp - start_stamp,inference_stamp - read_frame_stamp,write_frame_stamp - inference_stamp))# writer.releaseif __name__ == "__main__":parser = argparse.ArgumentParser(description="Face Mask Detection")parser.add_argument('--img-mode', type=int, default=0, help='set 1 to run on image, 0 to run on video.') #这里设置为1:检测图片;还是设置为0:视频文件(实时图像数据)检测parser.add_argument('--img-path', type=str, help='path to your image.')parser.add_argument('--video-path', type=str, default='0', help='path to your video, `0` means to use camera.')# parser.add_argument('--hdf5', type=str, help='keras hdf5 file')args = parser.parse_argsif args.img_mode:imgPath = args.img_path#img = cv2.imread("imgPath")img = cv2.imread(imgPath)img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)inference(img, show_result=True, target_shape=(260, 260))else:video_path = args.video_pathif args.video_path == '0':video_path = 0run_on_video(video_path, '', conf_thresh=0.5)

测试集 PR 曲线

因为 WIDER face 是一个任务比较复杂的数据集,模型又设计的非常小,所以对于人脸的 PR 曲线并不是那么性感。这点可以通过设计大模型来提升对于小人脸的检测效果。

python实时口罩检测(识别率惊人的GitHub口罩检测)(13)

再次感谢 AIZOOTech 的开源项目 —— FaceMaskDetection。

本文为 CSDN 博主「一颗小树x」原创文章,CSDN 官方经授权发布。

原文地址:https://blog.csdn.net/qq_41204464/article/details/104596777

欢迎更多的开发者朋友加入 CSDN 原力计划!我们将用全新的方式来释放更多的流量,让优质、有深度、丰富有趣的内容得到精准的流量扶持,同时也帮助创作者和粉丝有更多互动和交流。点击下方图片了解详情。

,