作者:jinshang,腾讯WXG后台开发工程师自从步入现代c 时代开始,C 语言标准形成了三年一个版本的惯例:C 11标志着现代C 的开端,C 14在11的基础上查缺补漏,并未加入许多新特性,而C 17作为C 11后的第一个大版本,标志着现代C 逐渐走向成熟WXG编译器升级到gcc7.5已有一段时间,笔者所在项目组也已经将全部代码升级到C 17在使用了c 17一年多之后,笔者总结了C 17在业务代码中最好用的十个特性,我来为大家科普一下关于c代码大全?下面希望有你要的答案,我们一起来看看吧!

c代码大全(17在业务代码中最好用的十个特性)

c代码大全

作者:jinshang,腾讯WXG后台开发工程师

自从步入现代c 时代开始,C 语言标准形成了三年一个版本的惯例:C 11标志着现代C 的开端,C 14在11的基础上查缺补漏,并未加入许多新特性,而C 17作为C 11后的第一个大版本,标志着现代C 逐渐走向成熟。WXG编译器升级到gcc7.5已有一段时间,笔者所在项目组也已经将全部代码升级到C 17。在使用了c 17一年多之后,笔者总结了C 17在业务代码中最好用的十个特性。

注1:本文只包含wxg的gcc7.5支持的特性,Execution Policy, File System等暂不支持的特性不包含在内。

注2:本文只包含应用于业务逻辑的特性,Fold Expression, Mathematical Special Functions等适用于元编程和科学计算的特性并不包含。

笔者将这些特性大体上分为三类:语法糖、性能提升和类型系统


语法糖

这里所说的语法糖,并不是严格意义上编程语言级别的语法糖,还包括一些能让代码更简洁更具有可读性的函数和库:

结构化绑定

c 17最便利的语法糖当属结构化绑定。结构化绑定是指将array、tuple或struct的成员绑定到一组变量*上的语法,最常用的场景是在遍历map/unordered_map时不用再声明一个中间变量了:

// pre c 17 for(const auto& kv: map){ const auto& key = kv.first; const auto& value = kv.second; // ... } // c 17 for(const auto& [key, value]: map){ // ... }

严格来说,结构化绑定的结果并不是变量,c 标准称之为名字/别名,这也导致它们不允许被lambda捕获,但是gcc并没有遵循c 标准,所以以下代码在gcc可以编译,clang则编译不过

for(const auto& [key, value]: map){ [&key, &value]{ std::cout << key << ": " << value << std::endl; }(); }

在clang环境下,可以在lambda表达式捕获时显式引入一个引用变量通过编译

for(const auto& [key, value]: map){ [&key = key, &value = value]{ std::cout << key << ": " << value << std::endl; }(); }

另外这条限制在c 20中已经被删除,所以在c 20标准中gcc和clang都可以捕获结构化绑定的对象了。

std::tuple的隐式推导

在c 17以前,构造std::pair/std::tuple时必须指定数据类型或使用std::make_pair/std::make_tuple函数,c 17为std::pair/std::tuple新增了推导规则,可以不再显示指定类型。

// pre c 17 std::pair<int, std::string> p1{3.14, "pi"s}; auto p1 = std::make_pair(3.14, "pi"s); // c 17 std::pair p3{3.14, "pi"s};

if constexpr

if constexpr语句是编译期的if判断语句,在C 17以前做编译期的条件判断往往通过复杂SFINAE机制或模版重载实现,甚至嫌麻烦的时候直接放到运行时用if判断,造成性能损耗,if constexpr大大缓解了这个问题。比如我想实现一个函数将不同类型的输入转化为字符串,在c 17之前需要写三个函数去实现,而c 17只需要一个函数。

// pre c 17 template <typename T> std::string convert(T input){ Return std::to_string(input); } // const char*和string进行特殊处理 std::string convert(const char* input){ return input; } std::string convert(std::string input){ return input; }

// c 17 template <typename T> std::string convert(T input) { if constexpr (std::is_same_v<T, const char*> || std::is_same_v<T, std::string>) { return input; } else { return std::to_string(input); } }

if初始化语句

c 17支持在if的判断语句之前增加一个初始化语句,将仅用于if语句内部的变量声明在if内,有助于提升代码的可读性。且对于lock/iterator等涉及并发/RAII的类型更容易保证程序的正确性。

// c 17 std::map<int, std::string> m; std::mutex mx; extern bool shared_flag; // guarded by mx int demo() { if (auto it = m.find(10); it != m.end()) { return it->second.size(); } if (char buf[10]; std::fgets(buf, 10, stdin)) { m[0] = buf; } if (std::lock_guard lock(mx); shared_flag) { unsafe_ping(); shared_flag = false; } if (int s; int count = ReadBytesWithSignal(&s)) { publish(count); raise(s); } if (const auto keywords = {"if", "for", "while"}; std::ranges::any_of(keywords, [&tok](const char* kw) { return tok == kw; })) { std::cErr << "Token must not be a keyword\n"; } }

性能提升std::shared_mutex

shared_mutex是c 的原生读写锁实现,有共享和独占两种锁模式,适用于并发高的读场景下,通过reader之前共享锁来提升性能。在c 17之前,只能自己通过独占锁和条件变量自己实现读写锁或使用c 14加入的性能较差的std::shared_timed_mutex。以下是通过shared_mutex实现的线程安全计数器:

// c 17 class ThreadSafeCounter { public: ThreadSafeCounter() = default; // Multiple threads/readers can read the counter's value at the same time. unsigned int get() const { std::shared_lock lock(mutex_); return value_; } // Only one thread/writer can increment/write the counter's value. unsigned int increment() { std::unique_lock lock(mutex_); return value_; } // Only one thread/writer can reset/write the counter's value. void reset() { std::unique_lock lock(mutex_); value_ = 0; } private: mutable std::shared_mutex mutex_; unsigned int value_ = 0; };

std::string_view

std::string_view顾名思义是字符串的“视图”,类成员变量包含两个部分:字符串指针和字符串长度,std::string_view涵盖了std::string的所有只读接口。std::string_view对字符串不具有所有权,且兼容std::string和const char*两种类型。

c 17之前,我们处理只读字符串往往使用const std::string&,std::string有两点性能优势:

  1. 兼容两种字符串类型,减少类型转换和内存分配。如果传入的是明文字符串const char*, const std::string&需要进行一次内存分配,将字符串拷贝到堆上,而std::string_view则可以避免。
  2. 在处理子串时,std::string::substr也需要进行拷贝和分配内存,而std::string_view::substr则不需要,在处理大文件解析时,性能优势非常明显。

// from https://stackoverflow.com/a/40129046 // author: Pavel Davydov // string_view的remove_prefix比const std::string&的快了15倍 string remove_prefix(const string &str) { return str.substr(3); } string_view remove_prefix(string_view str) { str.remove_prefix(3); return str; } static void BM_remove_prefix_string(benchmark::State& state) { std::string example{"asfaghdfgsghasfasg3423rfgasdg"}; while (state.KeepRunning()) { auto res = remove_prefix(example); // auto res = remove_prefix(string_view(example)); for string_view if (res != "aghdfgsghasfasg3423rfgasdg") { throw std::runtime_error("bad op"); } } }

std::map/unordered_map try_emplace

在向std::map/unordered_map中插入元素时,我们往往使用emplace,emplace的操作是如果元素key不存在,则插入该元素,否则不插入。但是在元素已存在时,emplace仍会构造一次待插入的元素,在判断不需要插入后,立即将该元素析构,因此进行了一次多余构造和析构操作。c 17加入了try_emplace,避免了这个问题。同时try_emplace在参数列表中将key和value分开,因此进行原地构造的语法比emplace更加简洁

std::map<std::string, std::string> m; // emplace的原地构造需要使用std::piecewise_construct,因为是直接插入std::pair<key, value> m.emplace(std::piecewise_construct, std::forward_as_tuple("c"), std::forward_as_tuple(10, 'c')); // try_emplace可以直接原地构造,因为参数列表中key和value是分开的 m.try_emplace("c", 10, 'c')

同时,c 17还给std::map/unordered_map加入了insert_or_assign函数,可以更方便地实现插入或修改语义

类型系统

c 17进一步完备了c 的类型系统,终于加入了众望所归的类型擦除容器(Type Erasure)和代数数据类型(Algebraic Data Type)

std::any

std::any是一个可以存储任何可拷贝类型的容器,C语言中通常使用void*实现类似的功能,与void*相比,std::any具有两点优势:

  1. std::any更安全:在类型T被转换成void*时,T的类型信息就已经丢失了,在转换回具体类型时程序无法判断当前的void*的类型是否真的是T,容易带来安全隐患。而std::any会存储类型信息,std::any_cast是一个安全的类型转换。
  2. std::any管理了对象的生命周期,在std::any析构时,会将存储的对象析构,而void*则需要手动管理内存。

std::any应当很少是程序员的第一选择,在已知类型的情况下,std::optional, std::variant和继承都是比它更高效、更合理的选择。只有当对类型完全未知的情况下,才应当使用std::any,比如动态类型文本的解析或者业务逻辑的中间层信息传递。

std::optional

std::optional<T>代表一个可能存在的T值,对应Haskell中的Maybe和Rust/OCaml中的option,实际上是一种Sum Type。常用于可能失败的函数的返回值中,比如工厂函数。在C 17之前,往往使用T*作为返回值,如果为nullptr则代表函数失败,否则T*指向了真正的返回值。但是这种写法模糊了所有权,函数的调用方无法确定是否应该接管T*的内存管理,而且T*可能为空的假设,如果忘记检查则会有SegFault的风险。

// pre c 17 ReturnType* func(const std::string& in) { ReturnType* ret = new ReturnType; if (in.size() == 0) return nullptr; // ... return ret; } // c 17 更安全和直观 std::optional<ReturnType> func(const string& in) { ReturnType ret; if (in.size() == 0) return nullopt; // ... return ret; }

std::variant

std::variant<T, U, ...>代表一个多类型的容器,容器中的值是制定类型的一种,是通用的Sum Type,对应Rust的enum。是一种类型安全的union,所以也叫做tagged union。与union相比有两点优势:

  1. 可以存储复杂类型,而union只能直接存储基础的POD类型,对于如std::vector和std::string就等复杂类型则需要用户手动管理内存。
  2. 类型安全,variant存储了内部的类型信息,所以可以进行安全的类型转换,c 17之前往往通过union enum来实现相同功能。

通过使用std::variant<T, Err>,用户可以实现类似Rust的std::result,即在函数执行成功时返回结果,在失败时返回错误信息,上文的例子则可以改成:

std::variant<ReturnType, Err> func(const string& in) { ReturnType ret; if (in.size() == 0) return Err{"input is empty"}; // ... return {ret}; }

需要注意的是,c 17只提供了一个库级别的variant实现,没有对应的模式匹配(Pattern Matching)机制,而最接近的std::visit又缺少编译器的优化支持,所以在c 17中std::variant并不好用,跟Rust和函数式语言中出神入化的Sum Type还相去甚远,但是已经有许多围绕std::variant的提案被提交给c 委员会探讨,包括模式匹配,std::expected等等。

总结一下,c 17新增的三种类型给c 带来了更现代更安全的类型系统,它们对应的使用场景是:

总结

以上是笔者在生产环境中最常用的c 17特性,除了本文描述的十个特性外,c 17还添加了如lambda值捕获*this, 钳夹函数std::clamp(), 强制检查返回值[[nodiscard]]等非常易用的特性,本文篇幅有限不做赘述,欢迎有兴趣的读者自行探索。

,