扫描探针显微镜主要包括扫描隧道显微镜和原子力显微镜,其利用尖锐的针尖逐点扫描样品,可在原子和分子尺度上获取表面的形貌和丰富的物性,改变了人们对物质的研究范式和基础认知。近年来,qPlus型高品质因子力传感器的出现将扫描探针显微镜的分辨率和灵敏度推向了一个新的水平,为化学结构、电荷态、电子态、自旋态等多自由度的精密探测和操控提供了前所未有的机会。文章首先简要介绍原子力显微镜的发展历史和基本工作原理,然后重点描述qPlus型原子力显微镜技术的优势及其在单原子、单分子和低维材料体系中的应用,最后展望该技术的未来发展趋势和潜在应用。关键词 扫描探针显微镜,原子力显微镜,qPlus力传感器,高分辨成像,原子分辨

01原子力显微镜的诞生

显微镜是人类认识微观世界的最重要工具之一。光学显微镜的诞生让人们第一次看到了细菌、细胞等用肉眼无法看到的微小物体,从而打开了崭新的世界。然而,由于光学衍射极限的限制,光学显微镜的空间分辨率一般局限于可见光波长的一半左右(约300 nm),很难用于分辨纳米尺度下更细微的结构,更无法用于观察物质最基本的原子结构排布。要想进一步提高探测的空间分辨率,一种途径是减小探测波的波长,比如扫描电子显微镜就是利用波长更短的电子波来进行成像。另一种途径是采取近场的局域探测,比如近场光学显微镜及其他基于局域相互作用探测的扫描探针显微镜。可以想象,要想获得更高的空间分辨率,就需要对样品的探测更加局域,即“探针”尖端足够尖,最好只有探针和样品最接近的几个原子能够发生相互作用,“感受”到彼此。这种相互作用可以是电子波函数的交叠或者原子作用力等。

1981年,Binnig和Rohrer发明了扫描隧道显微镜(scanNing tunneling microscope,STM),STM是基于探测针尖和样品之间的隧道电流来进行空间成像的工具。由于隧道电流正比于针尖尖端几个原子与衬底原子的电子波函数的交叠,对针尖与样品之间的距离非常敏感,因此可以获得原子级的空间分辨率。STM的发明,使得人们可以在实空间直接观察固体表面的原子结构,因此荣获1986年的诺贝尔物理学奖[1]。然而,STM依赖于隧道电流的探测,无法用于扫描绝缘样品,因此使用范围受到了极大的限制。

有趣的是,在早期的STM实验中,研究人员发现当针尖和样品比较近而出现隧道电流时,会同时产生较强的相互作用力。Binnig意识到通过测量针尖与样品原子之间的相互作用力也可用来对样品表面成像。1986年,他提出了基于探测针尖和样品之间原子作用力的新型显微镜——原子力显微镜(atomic force microscope,AFM)[2],并随后与Quate和Gerber搭建出了第一套可以工作的AFM[3]。三人于2016年获得了Kavli纳米科学奖。

AFM是基于针尖与样品之间原子作用力的探测,不需要样品具有导电性,因而可以用于研究包括金属、半导体、绝缘体等多种材料体系,大大弥补了STM的研究局限。此外,AFM还可以在大气和液体环境中工作,具有很好的工况条件和生物体系兼容性。这些优势使得AFM成为纳米科学领域使用最广泛的成像工具之一。然而,AFM并不像STM那样在发明之初就获得了原子级分辨率,而是直到5年之后(1991年),惰性固体表面的原子分辨成像才得以实现[4,5]。

近年来,由于qPlus力传感器的引入,AFM的空间分辨能力得到了极大的提升。通过针尖修饰,人们可以更加容易地获得原子级成像,甚至实现氢原子和化学键的超高分辨成像。接下来,本文将简要介绍常见AFM的基本工作原理,然后着重介绍基于qPlus力传感器的AFM(简称qPlus-AFM)及其在各种体系中的应用,最后展望qPlus-AFM在物理和其他领域的潜在应用和面临的挑战。

02常规AFM的原理和工作模式介绍

2.1 AFM工作的基本原理

目前使用最为广泛的是激光反射式AFM,其典型的结构示意图如图1(a)所示[6]。最核心的部分是力传感器,它一般是一个由微加工技术制备的可以振动的悬臂(常用的材料是硅或者氮化硅),悬臂的末端有一个与悬臂梁一体的尖锐针尖,悬臂的背面镀有一层金属以达到镜面反射。当一束激光照射到悬臂上,光斑被反射到一个对光斑位置非常敏感的光电探测器上。当针尖扫描样品表面时,由于针尖与样品之间存在相互作用力,悬臂将随样品表面形貌的起伏而产生不同程度的弯曲形变,因而反射光斑的位置也会发生变化。通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(1)

图1 AFM工作的基本原理[6] (a)典型激光反射式AFM的结构示意图;(b)超高真空下针尖与样品的相互作用力Fts及各成分力与针尖—样品距离z的关系

2.2 原子力的分类

在超高真空环境中,针尖与样品之间的相互作用力(Fts)与针尖—样品距离z之间典型的关系曲线如图1(b)所示。Fts大致可以分为长程力和短程力,长程力通常包括范德瓦耳斯力和静电力等,其衰减长度一般为几纳米或者几十纳米。短程力主要包括来自针尖和样品之间形成化学键的作用力和由于针尖—样品电子云交叠产生的泡利排斥力,其衰减长度一般约为0.1 nm左右。长程力对距离不敏感,很难分辨较小的表面起伏,要想获得较高的空间分辨率,需要让短程力的贡献占主导。在特殊的环境下,针尖和样品之间的相互作用力还包括机械接触力、毛细力、磁场力、卡西米尔力、水合力等。

2.3 AFM的主要工作模式

AFM有多种工作模式,通常分为静态模式和动态模式,后者包括非接触模式和轻敲模式两种(图2(a))。

在静态模式下,针尖以拖拽的形式在样品表面扫描并记录表面的形貌起伏变化,因此也叫接触模式。悬臂的形变量为q=Fts/k (k为悬臂的劲度系数),为了提高力探测的灵敏度,一般使用较软(k较小)的悬臂。为了避免较大的吸引力引起针尖发生“突跳”现象,静态模式主要工作在短程的排斥力区间(图2(b)),因此空间分辨率较高。但这种模式下针尖和样品之间的相互作用力较大,容易对较软的样品产生破坏。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(2)

图2 AFM的工作模式[6] (a)接触模式、非接触模式和轻敲模式的示意图;(b)不同模式的大致工作范围(区分并不严格);(c)悬臂在频率调制和振幅调制模式下的共振曲线。人们也经常把振幅调制模式称为轻敲模式,把频率调制模式称为非接触模式

在动态模式下,悬臂被压电陶瓷励振器驱动以共振频率振动,当振幅A足够大使得回复力kA>max(Fts)时可以避免“突跳”现象的发生。动态模式有轻敲模式和非接触模式两种。轻敲模式类似于盲人使用手杖行走,其振幅比较大,一般从几纳米到一百多纳米,主要的力的贡献来源于针尖距离样品很近甚至接触的时候。这种模式对样品的损坏小,适用于不同的材料,是目前AFM使用最为广泛的模式。但是这种模式由于包含较多的长程力贡献,因此一般较难获得原子级分辨。此外,由于轻敲模式下振幅较大,测量振幅变化的信噪比较高,这种模式一般使用幅度调制(amplitude modulated,AM),即以固定频率和振幅的激励信号来驱使悬臂振动,针尖和样品的作用力会引起悬臂振幅(及相对于激励信号的相位)的变化,将测量的振幅(或相位)的变化作为反馈信号可以获取样品表面的形貌信息(图2(c))。

非接触模式的振幅一般是几纳米或埃的量级,针尖在振动过程中不会接触样品,因此可以避免对样品的扰动或者破坏。非接触式AFM除了可以使用AM模式外,还能以频率调制(frequency modulated,FM)模式工作。这其实与收音机的AM和FM模式原理类似,只是工作的频段不同。在FM模式下,悬臂保持相位和振幅不变,针尖和样品的作用力引起悬臂振动频率的变化,测量振动频率的变化可以得到样品表面形貌的信息(图2(c))。

AM和FM模式下悬臂的共振频率变化的响应时间[7,8]分别约为τAM=Q/(πf0),τFM=1/(2πf0),其中Q是悬臂的品质因子,f0为悬臂的本征振动频率。由此可见,AM模式的响应时间会随Q因子的增加而线性变大,而FM模式的响应时间不受Q因子的影响。在超高真空低温环境中,悬臂的Q因子会比大气环境下增加几十倍,这使得AFM对力的敏感度及信噪比会有很大提升,但也会使得AM模式下AFM的响应时间大幅延长,导致扫描成像需要很长的时间。因此,AM模式(轻敲模式)主要被用于大气或者液体环境中。Q因子的增加对FM模式下AFM的响应时间没有影响,所以FM模式是超高真空环境下被广泛使用的工作模式,即保持高Q因子的同时还能保证较高的扫描速度。

2.4 影响频率调制AFM噪音大小的因素

在FM模式下,AFM直接探测的信号是针尖—样品相互作用力引起的悬臂频率偏移∆f,利用公式[9]可进一步转化为相互作用力Fts。频率偏移对应的相对噪音

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(3)

,因此可以用δkts的形式来表示FM模式下AFM测量中4种主要的噪音来源,分别为[10]

热噪音:

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(4)

力传感器信号探测的噪音:

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(5)

AFM悬臂振荡的噪音:

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(6)

漂移噪音:

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(7)

其中kB为玻尔兹曼常数,T是温度,B是与扫描速度对应的带宽,nq是悬臂偏转信号探测的噪音密度,r 是频率的漂移速率,N是扫描图像的像素数。由上述式子可知,k越小,4种噪音都更小,因此在满足kA>max(Fts)的前提下,选择的k越小越好;Q越大,会使得第一和第三种噪音更小,但过大的Q会使得悬臂在FM模式下的稳定起振难以维持;振幅A越大,前三种噪音都更小,但A太大会引起短程力贡献大幅减小的问题(见下节)。

03基于qPlus力传感器的非接触式AFM

3.1 振幅对非接触式AFM分辨率的影响

在FM模式下,AFM探测的频率偏移∆f,可以转化为权重函数w(z,A)和针尖—样品相互作用力的梯度

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(8)

的卷积[11]。如图3所示,w(z,A)是与振幅A和距离z相关的半椭圆,kts是力Fts与z曲线的梯度,也呈现为勺子形,只是最低点对应的距离z有所不同。可见,当振幅较大时,长程力对频率偏移的贡献占主导;随着振幅减小,短程力的贡献变大。当振幅与短程力的衰减长度(亚埃级)接近时,更容易得到原子级分辨率[10]。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(9)

图3 长程力和短程力的贡献与AFM悬臂振幅A的关系[11]

3.2 qPlus力传感器的发明

传统AFM力传感器一般采用微加工制备的硅或者氮化硅悬臂,其劲度系数较小(约1 N/m),力的探测灵敏度高。为了能探测短程力从而实现高空间分辨,往往需要让针尖靠近表面,从而导致“突跳”的发生。为了避免“突跳”引起的针尖损坏,需要悬臂在较大的振幅下工作。然而,大的振幅会使长程力的贡献增加,引起AFM的空间分辨率大大降低。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(10)

图4 石英音叉和qPlus力传感器实物图 (a),(b)手表中拆出来的石英音叉[12];(c)第一代qPlus力传感器的实物图(图片来自德国雷根斯堡大学Giessibl课题组)[13];(d)第四代qPlus力传感器的实物图(图片来自北京大学江颖课题组)[6]

要想克服上述矛盾,实现在小振幅下工作的同时而不引起“突跳”的发生,则需要使用劲度系数k较大的悬臂。石英音叉是被广泛用于手表中的计时元件(图4(a),(b))[12],劲度系数高,可产生极高精度的振荡频率(一般为32—200 kHz),且具有很高的Q因子。此外,其悬臂的形变可以利用石英的压电效应以电学的方式来直接探测,不需要激光系统,更容易兼容低温环境。早期,人们一般是在石英音叉的一个悬臂上粘上针尖来作为力传感器使用。然而,两个悬臂(相当于两个耦合的谐振子)由于质量和受力的不对称性导致Q因子大幅度降低,严重降低了AFM的信噪比。1996年,Giessibl将音叉的一个悬臂固定在质量很大的基底上,而在另一个自由的悬臂上粘上针尖以作为AFM力传感器,这样把两个耦合的谐振子变成单个独立的谐振子,可以保持较高的Q因子,且Q因子几乎不受针尖—样品相互作用力的影响。因此,这种力传感器被称为qPlus力传感器[13](图4(c))。目前,qPlus力传感器已经经过了四代的升级和改进,最新的版本是直接设计单个石英悬臂作为力传感器(图4(d))。

表1 微加工硅悬臂力传感器与qPlus力传感器典型参数的对比[6]

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(11)

典型的qPlus力传感器与广泛使用的微加工硅悬臂力传感器的主要参数对比见表1。可以看到,qPlus力传感器悬臂的劲度系数高得多(一般约1800 N/m),因此其力灵敏度一般情况下低于硅悬臂。然而,qPlus力传感器可以在非接触模式下,以极小的振幅(约100 pm)近距离扫描样品,而不会出现“突跳”现象。由于qPlus-AFM的振幅可以与短程力的衰减长度接近,因此短程力的贡献非常大,更加容易获得超高的空间分辨率。最近,田野等通过优化设计qPlus力传感器,将Q因子提升到140000以上,最小振幅小于10 pm,最小探测力小于2 pN,从而将qPlus力传感器的性能推向了一个新的水平[14]。此外,使用导电针尖,并通过单独的导线把经过针尖的电流提取出来,可以很容易地将qPlus-AFM与STM集成在一起,以同时发挥STM和AFM的功能。关于qPlus-AFM更为系统的介绍见综述[10,11]。

3.3 获得超高空间分辨率的关键

如前所述,针尖与样品间的相互作用越局域,空间分辨率越高。换言之,要想获得超高的空间分辨率,需要减小长程力的贡献,凸显短程力的贡献。要实现这一点,有两点非常关键:一是使用与短程力衰减长度接近的亚埃级的小振幅工作(详见3.1节);二是让针尖更加尖锐,减少长程的范德瓦耳斯力的贡献。对于AFM成像来说,针尖末端几纳米的部分尤其是针尖末端的几个原子扮演着最重要的角色。为了让针尖末端更尖锐,常用办法是让金属针尖轻戳金属衬底或对针尖进行原子或者分子修饰,使得短程的泡利排斥力、化学键力或者高阶静电力占主导。

3.3.1 短程的泡利排斥力

当针尖与样品的距离足够近时,二者的电子云会发生交叠,产生很强的短程泡利排斥力。大部分时候,泡利排斥力是对固体及分子体系成像获得原子级分辨率的关键。2009年,Gross等[15]发现对针尖修饰一氧化碳(CO)分子后,可以实现对单个并五苯分子的化学键和结构(图5(a))的超高分辨成像(图5(c)),其分辨率已经超过了STM图像(图5(b))。这种超高空间分辨率的成像主要起源于CO针尖“尖锐”的p轨道与并五苯分子之间电子云交叠所导致的短程泡利排斥力。这种针尖修饰方法简单易行,成像分辨率高,使得qPlus-AFM成像技术迅速获得了广泛的应用。除了CO分子修饰外,人们还可以对针尖修饰其他种类的原子或者分子,以提高空间分辨率或者实现其他特定功能,例如Cl离子[16]和Xe分子[17]修饰的针尖以及CuO针尖[18]等。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(12)

图5 基于泡利排斥力的单分子化学键成像[15] (a)并五苯分子的结构图;用 CO 分子修饰的针尖得到的 STM 图(b)和AFM图(c)

3.3.2 短程的化学键力

当针尖和衬底的化学活性都较强时,在近距离扫描过程中,二者可以形成局域的化学键,基于这种短程的化学键力,也可以获得超高的空间分辨率。典型的例子是半导体表面的AFM高分辨成像。例如,Giessibl等[19]发现在用AFM扫描Si(111)-(7×7)样品时,针尖会从样品上吸起一些Si团簇而被修饰,因此在扫描时容易与样品表面带悬挂键的Si原子形成共价键,而得到原子级分辨率。然而,这种成像方式对表面结构扰动较大,不适用于弱键和分子体系。

3.3.3 短程的静电力

通常所说的静电力主要来源于低阶静电力,比如点电荷与点电荷或者电偶极之间的静电力,其大小分别正比于r -2和r -3(r是二者作用的距离),是较长程的相互作用力,因此空间分辨率较低。而在某些特殊的情况下,高阶静电力的贡献会起主要作用,而且是更加短程的,因此会导致分辨率的显著提升。一个典型的例子是对离子晶体(如NaCl,MgO,Cu2N等)的原子分辨成像。离子晶体表面周期性的正负电荷排布产生指数衰减的短程静电势分布[20],针尖与离子晶体表面的短程静电力作用可以得到原子级分辨的成像[21]。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(13)

图6 基于高阶静电力的水分子高分辨成像 (a)CO针尖示意图(上)及DFT计算得到的CO针尖的电荷分布(下),呈现出明显的电四极矩特征[16];(b)水四聚体的原子结构图(上)和AFM图(下)[16]。白色箭头和弧线分别指示水分子中氧原子和氢原子的位置;(c)Au(111)上双层二维冰的原子构型(上)和AFM图像(下),其中可以分辨平躺(蓝色箭头)和直立(黑色箭头)的水分子[23];(d)Au(111)表面由Zundel类型水合氢离子(黑色箭头)自组装形成的单层结构图(上)和AFM图像(下)[14]

另一个例子是利用CO针尖对强极性分子的高分辨成像。彭金波等[16]利用CO修饰的针尖(图6(a)上图)扫描水分子四聚体时,发现即使在针尖距离较远时也能获得亚分子级的分辨率(图6(b)),且图像的形貌与水分子四聚体的静电势分布极其接近,从中可识别水分子OH键的取向。通过理论计算得知,CO修饰的针尖具有电四极矩(图6(a)下图),与水分子电偶极之间存在高阶静电力相互作用,这是一种更为短程的静电力(正比于r -6),因此能够在未进入泡利排斥区域时获得超高空间分辨。这种基于微弱的高阶静电力的成像技术可以区分水分子中氢、氧原子的位置和氢键的取向并且扰动极小。近年来,这个技术已被成功应用于亚稳态水分子团簇[16]、盐离子水合物[22]、二维冰[23](图6(c))及单层水中的水合氢离子[14]的非侵扰高分辨成像(图6(d)),将水科学的研究推向了原子尺度。

04超高分辨qPlus-AFM的应用

相对于传统的AFM,qPlus-AFM可以很方便地与STM集成在一起,并兼容超高真空和低温环境,而且可获得原子级甚至单个化学键级的超高空间分辨率。这些优势使得qPlus-AFM获得了广泛的应用,大大促进了表面科学和低维材料研究领域的快速发展。下面我们简要介绍qPlus-AFM在高分辨结构成像、电荷态和电子的测量、原子力的测量和操纵等方面的应用和最新进展。

4.1 高分辨结构成像

qPlus-AFM在高分辨结构成像方面得到了最为广泛的应用。Gross等[15]通过对AFM针尖进行CO修饰,首次实现对有机分子的化学结构的直接测量(图5),触发了一系列后续研究,包括:分子之间的氢键相互作用[24]、分子化学键键序[25]、铁原子团簇[26]、化学反应产物识别[27]等。近年来,人们通过控制有机分子前驱体的表面化学反应可以精确制备低维纳米材料,如石墨烯、石墨烯纳米带等。STM虽然被广泛用于表征其电子态,但是难以直接确定其原子结构、局域缺陷和边界构型等。qPlus-AFM对原子结构的敏感及超高的空间分辨率,可以很好地解决这些问题。例如,Gröning等[28]利用扫描隧道谱成像观测到了石墨烯纳米带末端的拓扑末端态(图7(a)右),并通过AFM成像确定了拓扑非平庸的石墨烯纳米带的原子构型(图7(a)左)。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(14)

图7 qPlus-AFM在低维材料高分辨成像中的典型应用 (a)表面合成的石墨烯纳米带的AFM图(左)和0.25 V偏压下的dI /dV 图(右)[28],四角较亮部分指示拓扑边缘态;(b)利用磁性针尖得到的绝缘反铁磁NiO表面的AFM图像(左)及沿[100]方向相邻两个Ni原子不同自旋取向对应的高度轮廓线(右)[34]

此外,qPlus-AFM开始被用于绝缘体表面原子结构的高分辨成像,如KBr[29],CaF2[30]等。在复杂氧化物表面方向,Diebold组观测了钙钛矿KTaO3(001)的表面重构[31]和TiO2(110)及In2O3(111)表面分子的吸附和分解[32,33]等。最近,qPlus-AFM被用于对绝缘反铁磁材料NiO的成像,而且使用磁性针尖成像时,由于超交换作用可以分辨不同Ni原子的自旋取向[34](图7(b))。

4.2 电荷态和电子态的测量

在电荷态测量方面,由于qPlus-AFM极高的信噪比和力灵敏度,Gross等[35]率先展示了单个原子的不同带电状态可以通过AFM直接测量(图8(a))。通过测量AFM的局域接触势差,单个原子和分子内部的电荷分布也可进行成像[36,37]。利用厚层绝缘的NaCl阻断分子与金属衬底之间的电荷转移,可对单分子进行多重电荷的充放电并控制分子间的电荷横向转移[38]。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(15)

图8 AFM在电荷和电子态探测中的应用 (a)电中性和带负电的金原子的恒高AFM图(插图)及对应的频率偏移的轮廓线[35];(b)三重激发态寿命的探测:左图为单个并五苯分子和近邻吸附的两个氧气分子的结构图(上)和AFM图(下);右图为测量三重激发态占据比例随电压脉冲停留时间的变化,通过指数拟合可得猝灭后三重激发态的寿命仅0.58(5) μs[42]

近些年,人们利用qPlus-AFM实现了对分子电子态的测量。例如,绝缘衬底上单分子的基态和激发态电子能谱被成功测量[39,40]。进一步,将AFM与纳秒电学脉冲结合,能直接对绝缘体表面上单分子在不同带电状态下电子转移的概率分布进行成像[41]。最近,qPlus-AFM被成功用于对分子自旋激发态的探测。彭金波等[42]发展了一套新颖的电学泵浦—探测AFM技术,首次实现了以原子级分辨率对单分子三重激发态寿命的探测并观测到了近邻氧气分子引起的三重态的猝灭(图8(b))。

4.3 原子力的测量与操纵

利用qPlus-AFM可以对原子作用力直接测量。Ternes等[43]变高度扫过表面上吸附的单原子并记录针尖—原子之间相互作用力引起的频率偏移(利用公式[9]可以将频率偏移∆f 转化成垂直作用力Fz),直到原子发生移动,便可知移动原子所需的最小垂直作用力(图9(a))。进一步,可以将垂直作用力转化为相互作用势,将其对x坐标微分可以得到移动原子所需的最小水平作用力Fx 的大小。利用类似的方法,单个石墨烯纳米带在Au(111)表面的摩擦力已被精确测量[44]。最近,通过测量原子力曲线,人们揭示了针尖上CO分子与衬底上单个铁/铜原子的物理吸附向化学吸附的转变过程[45]。

qPlus型原子力显微镜技术,qPlus型原子力显微镜技术(16)

图9 qPlus-AFM在原子力测量和操纵中的应用 (a)测量移动Pt(111)表面(灰色小球)吸附的单个Co原子(红色圆球)所需的力[43]。由远及近测量沿原子上方(x方向,图(a-i))的频率偏移及垂直作用力Fz(a-ii),直到在某个高度下开始引起原子移动(红色箭头所示),从而可以得知移动原子所需要的最小垂直作用力(a-iii);(b)利用AFM针尖和金刚石样品之间产生的局域强电场,通过“拉出—推离”方法耗尽NV色心附近的杂质电荷((b-i),(b-ii)),使NV色心的自旋相干时间提升20倍(b-iii)[47]

此外,qPlus-AFM也开始被尝试应用于绝缘载体中固态量子比特的操控。边珂等[46]利用金属针尖的局域强电场和激光成功诱导了金刚石氮—空位色心(NV center)的电荷态转换。进一步,郑闻天等[47]通过施加较大的偏压,在AFM针尖—样品之间产生强电场,改变电场的方向,利用“拉出—推离”方法来清除NV色心周围的未配对电子,实现了金刚石近表面电子自旋噪声的高效抑制,从而大幅提升了浅层NV色心的相干性(T2,echo时间提升20倍)及其探测灵敏度(图9(b))。

05总结和展望

基于qPlus力传感器的超高分辨AFM技术,有力促进了单分子、表面科学、低维材料等研究方向的发展,为人们理解物质的结构、电子态、电荷态、自旋态等提供了崭新的信息。这种超高分辨的AFM成像技术仍处于快速发展期,我们相信在接下来若干年它会成为物理、材料、化学、生物等学科领域的重要工具,并对这些领域产生深远的影响。

5.1 应用展望

首先,高分辨qPlus-AFM成像技术可以提供固体表面的原子结构和原子尺度电荷分布的信息。STM仅对费米能级附近的电子态或外层电子敏感,常常很难将几何结构和电子态的信息分离开,而qPlus-AFM测量的泡利排斥力对总电子态密度敏感,其中包含内层电子的信息,可以反映原子核位置。因此,STM与qPlus-AFM的结合将有助于人们更准确细致地确定材料的结构和电子态分布。另一方面,通过qPlus-AFM对静电力的探测,可实现以单个电荷的灵敏度和原子级的空间分辨率确定原子或者分子带电状态。利用开尔文探针力显微镜(KPFM)模式或者对短程静电力的成像,还可对材料表面的电荷分布进行高分辨表征,这种关于电荷的新信息将为人们在原子尺度研究各种电荷序带来巨大的便利,比如电荷密度波、高温超导中的电荷序、铁电材料中的电荷分布等。

其次,qPlus-AFM也将为各种绝缘材料或者材料绝缘相研究打开全新的窗口。例如,高温超导体的母体一般是莫特绝缘体,STM很难成像。而qPlus-AFM可以用于研究高温超导体随着掺杂浓度的增加从莫特绝缘体向超导态和金属态转变的全过程,有助于理解高温超导的机制。如果将针尖进行自旋极化,还可研究各种磁性绝缘体(如NiO)或者材料绝缘相(如高温超导体的母体)的自旋分布等。此外,qPlus-AFM还将在以绝缘体为载体的固态量子比特研究中发挥独特的作用。借助qPlus-AFM强大的空间表征、操纵与局域调控能力,有望发展出表面/近表面量子比特的相干性提升、精密量子比特网络构筑、纳米尺度扫描量子传感等多种前沿技术。

最后,qPlus-AFM在化学和生物领域也将发挥重要的作用。qPlus-AFM可以用来识别化学反应的产物,还可以被用于研究绝缘体(如NiO,Fe3O4)表面的化学反应及固液界面各种化学反应(如电化学过程)的机制。在生物大分子的结构成像方面,可以精准识别DNA、RNA、蛋白质分子等的构型和相互作用位点,揭示其结构与功能的关系。

5.2 挑战和机遇

qPlus-AFM技术本身面临的一些问题和技术瓶颈亟待解决。qPlus力传感器的悬臂劲度系数大,对力的灵敏度较低。Q因子受环境和温度影响大,从而严重影响信噪比。一种可能的途径是发展主动控制Q因子的技术[48]。qPlus力传感器共振频率低(一般约几十kHz),成像速度慢,难以捕捉较快的非平衡态动力学过程,需要发展高速甚至超快的AFM技术。比如制备质量更小共振频率更高的AFM悬臂;或者将AFM与泵浦—探测技术相结合,将短的电压脉冲[42]或者超短的激光脉冲[49]耦合到qPlus-AFM中。利用qPlus-AFM对非平面的三维立体结构和分子的测量,还面临着挑战,发展新的算法(如利用机器学习)是一条可能的途径。此外,qPlus-AFM通常缺乏化学分辨,有时候很难仅从图像上获取样品的化学信息。一种途径是将其与具有化学分辨的光谱技术(如拉曼光谱)相结合[50]或者与磁共振技术结合。最后,qPlus-AFM面临的另一个巨大挑战是如何将其应用推广到溶液、生物体系等复杂的环境或体系中。大气溶液环境兼容的金刚石色心量子传感技术[51]可能为qPlus-AFM带来全新的应用场景和探测自由度。

#大有学问#

,